Michalis Mavrovouniotis, Maria N. Anastasiadou, D. Hadjimitsis
{"title":"衡量动态旅行推销员问题蚁群优化算法的性能","authors":"Michalis Mavrovouniotis, Maria N. Anastasiadou, D. Hadjimitsis","doi":"10.3390/a16120545","DOIUrl":null,"url":null,"abstract":"Ant colony optimization (ACO) has proven its adaptation capabilities on optimization problems with dynamic environments. In this work, the dynamic traveling salesman problem (DTSP) is used as the base problem to generate dynamic test cases. Two types of dynamic changes for the DTSP are considered: (1) node changes and (2) weight changes. In the experiments, ACO algorithms are systematically compared in different DTSP test cases. Statistical tests are performed using the arithmetic mean and standard deviation of ACO algorithms, which is the standard method of comparing ACO algorithms. To complement the comparisons, the quantiles of the distribution are also used to measure the peak-, average-, and bad-case performance of ACO algorithms. The experimental results demonstrate some advantages of using quantiles for evaluating the performance of ACO algorithms in some DTSP test cases.","PeriodicalId":7636,"journal":{"name":"Algorithms","volume":"69 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measuring the Performance of Ant Colony Optimization Algorithms for the Dynamic Traveling Salesman Problem\",\"authors\":\"Michalis Mavrovouniotis, Maria N. Anastasiadou, D. Hadjimitsis\",\"doi\":\"10.3390/a16120545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ant colony optimization (ACO) has proven its adaptation capabilities on optimization problems with dynamic environments. In this work, the dynamic traveling salesman problem (DTSP) is used as the base problem to generate dynamic test cases. Two types of dynamic changes for the DTSP are considered: (1) node changes and (2) weight changes. In the experiments, ACO algorithms are systematically compared in different DTSP test cases. Statistical tests are performed using the arithmetic mean and standard deviation of ACO algorithms, which is the standard method of comparing ACO algorithms. To complement the comparisons, the quantiles of the distribution are also used to measure the peak-, average-, and bad-case performance of ACO algorithms. The experimental results demonstrate some advantages of using quantiles for evaluating the performance of ACO algorithms in some DTSP test cases.\",\"PeriodicalId\":7636,\"journal\":{\"name\":\"Algorithms\",\"volume\":\"69 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algorithms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/a16120545\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/a16120545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Measuring the Performance of Ant Colony Optimization Algorithms for the Dynamic Traveling Salesman Problem
Ant colony optimization (ACO) has proven its adaptation capabilities on optimization problems with dynamic environments. In this work, the dynamic traveling salesman problem (DTSP) is used as the base problem to generate dynamic test cases. Two types of dynamic changes for the DTSP are considered: (1) node changes and (2) weight changes. In the experiments, ACO algorithms are systematically compared in different DTSP test cases. Statistical tests are performed using the arithmetic mean and standard deviation of ACO algorithms, which is the standard method of comparing ACO algorithms. To complement the comparisons, the quantiles of the distribution are also used to measure the peak-, average-, and bad-case performance of ACO algorithms. The experimental results demonstrate some advantages of using quantiles for evaluating the performance of ACO algorithms in some DTSP test cases.