使用基于光纤的法布里-珀罗干涉仪进行动态低压测量

Pronnaruimon Talhakultorn, S. Pullteap
{"title":"使用基于光纤的法布里-珀罗干涉仪进行动态低压测量","authors":"Pronnaruimon Talhakultorn, S. Pullteap","doi":"10.14416/j.asep.2023.11.011","DOIUrl":null,"url":null,"abstract":"A dynamic low-pressure measurement using a fiber optic-based Fabry-Perot Interferometer (FFPI) has been demonstrated in this work. The developed system has been divided into 2 main parts: pressure source and sensing system. The former is a chamber comprised of an elastic diaphragm, which proportionally deflects according to input pressure from an air pump. The FFPI, consequently, detects the material deflection and demodulates the parameter into useful pressure value via the fringe counting technique and Kirchhoff-Love’s plate theory. To validate the performance of the developed system, a reference pressure instrument is utilized while the air pump feeds pressure of 0.34–6.57 mbar with 10 times repeatability into the system. The experimental results indicated that the FFPI can measure the pressure of 0.343–6.568 mbar, while the reference instrument showed the output values from 0.343–6.471 mbar, respectively. Moreover, the average and maximum percentage error in measurement is 1.27% and 2.67%, respectively. The resolution of the FFPI sensor is also analyzed to be approximately 0.05% or 0.0382 mbar/μm over all measurement ranges. Therefore, we conclude that the FFPI has high accuracy, resolution, linearity, and reliability in dynamic low-pressure measurements.","PeriodicalId":8097,"journal":{"name":"Applied Science and Engineering Progress","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Low-Pressure Measurement Using a Fiber Optic-based Fabry-Perot Interferometer\",\"authors\":\"Pronnaruimon Talhakultorn, S. Pullteap\",\"doi\":\"10.14416/j.asep.2023.11.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A dynamic low-pressure measurement using a fiber optic-based Fabry-Perot Interferometer (FFPI) has been demonstrated in this work. The developed system has been divided into 2 main parts: pressure source and sensing system. The former is a chamber comprised of an elastic diaphragm, which proportionally deflects according to input pressure from an air pump. The FFPI, consequently, detects the material deflection and demodulates the parameter into useful pressure value via the fringe counting technique and Kirchhoff-Love’s plate theory. To validate the performance of the developed system, a reference pressure instrument is utilized while the air pump feeds pressure of 0.34–6.57 mbar with 10 times repeatability into the system. The experimental results indicated that the FFPI can measure the pressure of 0.343–6.568 mbar, while the reference instrument showed the output values from 0.343–6.471 mbar, respectively. Moreover, the average and maximum percentage error in measurement is 1.27% and 2.67%, respectively. The resolution of the FFPI sensor is also analyzed to be approximately 0.05% or 0.0382 mbar/μm over all measurement ranges. Therefore, we conclude that the FFPI has high accuracy, resolution, linearity, and reliability in dynamic low-pressure measurements.\",\"PeriodicalId\":8097,\"journal\":{\"name\":\"Applied Science and Engineering Progress\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Science and Engineering Progress\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14416/j.asep.2023.11.011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Science and Engineering Progress","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14416/j.asep.2023.11.011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用基于光纤的法布里-珀罗干涉仪(FFPI)演示了动态低压测量。开发的系统分为两个主要部分:压力源和传感系统。前者是一个由弹性膜片组成的腔体,根据气泵输入的压力按比例偏转。因此,FFPI 通过条纹计数技术和基尔霍夫-洛夫板理论检测材料偏转并将参数解调为有用的压力值。为了验证所开发系统的性能,在气泵向系统输入重复性为 10 倍的 0.34-6.57 毫巴压力时,使用了参考压力仪器。实验结果表明,FFPI 可以测量 0.343-6.568 毫巴的压力,而参考仪器的输出值分别为 0.343-6.471 毫巴。此外,测量的平均和最大百分比误差分别为 1.27% 和 2.67%。据分析,在所有测量范围内,FFPI 传感器的分辨率约为 0.05% 或 0.0382 mbar/μm。因此,我们得出结论,FFPI 在动态低压测量中具有高精度、高分辨率、高线性度和高可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamic Low-Pressure Measurement Using a Fiber Optic-based Fabry-Perot Interferometer
A dynamic low-pressure measurement using a fiber optic-based Fabry-Perot Interferometer (FFPI) has been demonstrated in this work. The developed system has been divided into 2 main parts: pressure source and sensing system. The former is a chamber comprised of an elastic diaphragm, which proportionally deflects according to input pressure from an air pump. The FFPI, consequently, detects the material deflection and demodulates the parameter into useful pressure value via the fringe counting technique and Kirchhoff-Love’s plate theory. To validate the performance of the developed system, a reference pressure instrument is utilized while the air pump feeds pressure of 0.34–6.57 mbar with 10 times repeatability into the system. The experimental results indicated that the FFPI can measure the pressure of 0.343–6.568 mbar, while the reference instrument showed the output values from 0.343–6.471 mbar, respectively. Moreover, the average and maximum percentage error in measurement is 1.27% and 2.67%, respectively. The resolution of the FFPI sensor is also analyzed to be approximately 0.05% or 0.0382 mbar/μm over all measurement ranges. Therefore, we conclude that the FFPI has high accuracy, resolution, linearity, and reliability in dynamic low-pressure measurements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Science and Engineering Progress
Applied Science and Engineering Progress Engineering-Engineering (all)
CiteScore
4.70
自引率
0.00%
发文量
56
期刊最新文献
Nanostructured Composites: Modelling for Tailored Industrial Application Facile Synthesis of Hybrid-Polyoxometalates Nanocomposite for Degradation of Cationic and Anionic Dyes in Water Treatment Characterization of Polyvinylpyrrolidone-2-Acrylamide-2-Methlypropansulphonic Acid Based Polymer as a Corrosion Inhibitor for Copper and Brass in Hydrochloric Acid Conditional Optimization on the Photocatalytic Degradation Removal Efficiency of Formaldehyde using TiO2 – Nylon 6 Electrospun Composite Membrane Multicomponent Equilibrium Isotherms and Kinetics Study of Heavy Metals Removal from Aqueous Solutions Using Electrocoagulation Combined with Mordenite Zeolite and Ultrasonication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1