分子通讯中的 "分子 "究竟是什么?探索基于粒子的信息载体的物理学原理

IF 2.4 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Molecular, Biological, and Multi-Scale Communications Pub Date : 2023-12-04 DOI:10.1109/TMBMC.2023.3338950
Hanlin Xiao;Kamela Dokaj;Ozgur B. Akan
{"title":"分子通讯中的 \"分子 \"究竟是什么?探索基于粒子的信息载体的物理学原理","authors":"Hanlin Xiao;Kamela Dokaj;Ozgur B. Akan","doi":"10.1109/TMBMC.2023.3338950","DOIUrl":null,"url":null,"abstract":"Molecular communication, as implied by its name, uses molecules as information carriers for communication between objects. It has an advantage over traditional electromagnetic-wave-based communication in that molecule-based systems could be biocompatible, operable in challenging environments, and energetically undemanding. Consequently, they are envisioned to have a broad range of applications, such as in the Internet of Bio-Nano Things, targeted drug delivery, and agricultural monitoring. Despite the rapid development of the field, with an increasing number of theoretical models and experimental testbeds established by researchers, a fundamental aspect of the field has often been sidelined, namely, the nature of the molecule in molecular communication. The potential information molecules could exhibit a wide range of properties, making them require drastically different treatments when being modeled and experimented upon. Therefore, in this paper, we delve into the intricacies of commonly used information molecules, examining their fundamental physical characteristics, associated communication systems, and potential applications in a more realistic manner, focusing on the influence of their own properties. Through this comprehensive survey, we aim to offer a novel yet essential perspective on molecular communication, thereby bridging the current gap between theoretical research and real-world applications.","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":"10 1","pages":"43-74"},"PeriodicalIF":2.4000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"What Really is “Molecule” in Molecular Communications? The Quest for Physics of Particle-Based Information Carriers\",\"authors\":\"Hanlin Xiao;Kamela Dokaj;Ozgur B. Akan\",\"doi\":\"10.1109/TMBMC.2023.3338950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Molecular communication, as implied by its name, uses molecules as information carriers for communication between objects. It has an advantage over traditional electromagnetic-wave-based communication in that molecule-based systems could be biocompatible, operable in challenging environments, and energetically undemanding. Consequently, they are envisioned to have a broad range of applications, such as in the Internet of Bio-Nano Things, targeted drug delivery, and agricultural monitoring. Despite the rapid development of the field, with an increasing number of theoretical models and experimental testbeds established by researchers, a fundamental aspect of the field has often been sidelined, namely, the nature of the molecule in molecular communication. The potential information molecules could exhibit a wide range of properties, making them require drastically different treatments when being modeled and experimented upon. Therefore, in this paper, we delve into the intricacies of commonly used information molecules, examining their fundamental physical characteristics, associated communication systems, and potential applications in a more realistic manner, focusing on the influence of their own properties. Through this comprehensive survey, we aim to offer a novel yet essential perspective on molecular communication, thereby bridging the current gap between theoretical research and real-world applications.\",\"PeriodicalId\":36530,\"journal\":{\"name\":\"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications\",\"volume\":\"10 1\",\"pages\":\"43-74\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10339403/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10339403/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

分子通信,顾名思义,就是利用分子作为信息载体,在物体之间进行通信。与传统的电磁波通信相比,分子通信的优势在于分子系统具有生物兼容性,可在具有挑战性的环境中运行,而且对能量的要求不高。因此,分子系统被认为具有广泛的应用前景,如生物纳米物联网、靶向给药和农业监测等。尽管该领域发展迅速,研究人员建立了越来越多的理论模型和实验平台,但该领域的一个基本方面往往被忽视,即分子通信中分子的性质。潜在的信息分子可能表现出多种多样的特性,因此在建立模型和进行实验时需要采用截然不同的处理方法。因此,在本文中,我们将深入探讨常用信息分子的复杂性,以更现实的方式研究它们的基本物理特性、相关通信系统和潜在应用,重点关注它们自身特性的影响。通过这一全面调查,我们旨在为分子通讯提供一个新颖而又重要的视角,从而弥合当前理论研究与实际应用之间的差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
What Really is “Molecule” in Molecular Communications? The Quest for Physics of Particle-Based Information Carriers
Molecular communication, as implied by its name, uses molecules as information carriers for communication between objects. It has an advantage over traditional electromagnetic-wave-based communication in that molecule-based systems could be biocompatible, operable in challenging environments, and energetically undemanding. Consequently, they are envisioned to have a broad range of applications, such as in the Internet of Bio-Nano Things, targeted drug delivery, and agricultural monitoring. Despite the rapid development of the field, with an increasing number of theoretical models and experimental testbeds established by researchers, a fundamental aspect of the field has often been sidelined, namely, the nature of the molecule in molecular communication. The potential information molecules could exhibit a wide range of properties, making them require drastically different treatments when being modeled and experimented upon. Therefore, in this paper, we delve into the intricacies of commonly used information molecules, examining their fundamental physical characteristics, associated communication systems, and potential applications in a more realistic manner, focusing on the influence of their own properties. Through this comprehensive survey, we aim to offer a novel yet essential perspective on molecular communication, thereby bridging the current gap between theoretical research and real-world applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
13.60%
发文量
23
期刊介绍: As a result of recent advances in MEMS/NEMS and systems biology, as well as the emergence of synthetic bacteria and lab/process-on-a-chip techniques, it is now possible to design chemical “circuits”, custom organisms, micro/nanoscale swarms of devices, and a host of other new systems. This success opens up a new frontier for interdisciplinary communications techniques using chemistry, biology, and other principles that have not been considered in the communications literature. The IEEE Transactions on Molecular, Biological, and Multi-Scale Communications (T-MBMSC) is devoted to the principles, design, and analysis of communication systems that use physics beyond classical electromagnetism. This includes molecular, quantum, and other physical, chemical and biological techniques; as well as new communication techniques at small scales or across multiple scales (e.g., nano to micro to macro; note that strictly nanoscale systems, 1-100 nm, are outside the scope of this journal). Original research articles on one or more of the following topics are within scope: mathematical modeling, information/communication and network theoretic analysis, standardization and industrial applications, and analytical or experimental studies on communication processes or networks in biology. Contributions on related topics may also be considered for publication. Contributions from researchers outside the IEEE’s typical audience are encouraged.
期刊最新文献
Table of Contents IEEE Transactions on Molecular, Biological, and Multi-Scale Communications Publication Information Guest Editorial Introduction to the Special Feature on the 8th Workshop on Molecular Communications Guest Editorial Special Feature on Seeing Through the Crowd: Molecular Communication in Crowded and Multi-Cellular Environments IEEE Communications Society Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1