Yuan Yu, Xingshuai Li, Yu Zhang, Zhiwei Jiao, Jiaxiang Liu
{"title":"进气口布局对立式涡轮空气分级机内部流场的影响","authors":"Yuan Yu, Xingshuai Li, Yu Zhang, Zhiwei Jiao, Jiaxiang Liu","doi":"10.37190/ppmp/175859","DOIUrl":null,"url":null,"abstract":"In this study, the influence of air inlet layout on the flow field distribution and particle movement trajectory for the vertical turbo air classifier are analyzed comparatively using the numerical simulation method. The air inlet layout adjustment can increase the axial velocity and turbulent dissipation rate at the feeding inlet and do not generate the axial negative velocity, which improves powder material pneumatic transportation and dispersion capacity; the air inlet layout adjustment can match the airflow rotation direction with the rotation direction of the rotor cage, which can eliminate the vortices in the rotor cage channel effectively. Moreover, the particle movement time is shortened and fast classification is completed, which can decrease the particle agglomeration probability and weaken the ‘fish-hook’ effect. The optimization scheme of the air inlet layout is Type-BC. In accordance with the numerical simulation results, the calcium carbonate classification experimental results indicate that the classification performance of the classifier is improved using Type-BC.","PeriodicalId":20169,"journal":{"name":"Physicochemical Problems of Mineral Processing","volume":"47 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The influence of air inlet layout on the inner flow field for a vertical turbo air classifier\",\"authors\":\"Yuan Yu, Xingshuai Li, Yu Zhang, Zhiwei Jiao, Jiaxiang Liu\",\"doi\":\"10.37190/ppmp/175859\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the influence of air inlet layout on the flow field distribution and particle movement trajectory for the vertical turbo air classifier are analyzed comparatively using the numerical simulation method. The air inlet layout adjustment can increase the axial velocity and turbulent dissipation rate at the feeding inlet and do not generate the axial negative velocity, which improves powder material pneumatic transportation and dispersion capacity; the air inlet layout adjustment can match the airflow rotation direction with the rotation direction of the rotor cage, which can eliminate the vortices in the rotor cage channel effectively. Moreover, the particle movement time is shortened and fast classification is completed, which can decrease the particle agglomeration probability and weaken the ‘fish-hook’ effect. The optimization scheme of the air inlet layout is Type-BC. In accordance with the numerical simulation results, the calcium carbonate classification experimental results indicate that the classification performance of the classifier is improved using Type-BC.\",\"PeriodicalId\":20169,\"journal\":{\"name\":\"Physicochemical Problems of Mineral Processing\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physicochemical Problems of Mineral Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.37190/ppmp/175859\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physicochemical Problems of Mineral Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.37190/ppmp/175859","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
The influence of air inlet layout on the inner flow field for a vertical turbo air classifier
In this study, the influence of air inlet layout on the flow field distribution and particle movement trajectory for the vertical turbo air classifier are analyzed comparatively using the numerical simulation method. The air inlet layout adjustment can increase the axial velocity and turbulent dissipation rate at the feeding inlet and do not generate the axial negative velocity, which improves powder material pneumatic transportation and dispersion capacity; the air inlet layout adjustment can match the airflow rotation direction with the rotation direction of the rotor cage, which can eliminate the vortices in the rotor cage channel effectively. Moreover, the particle movement time is shortened and fast classification is completed, which can decrease the particle agglomeration probability and weaken the ‘fish-hook’ effect. The optimization scheme of the air inlet layout is Type-BC. In accordance with the numerical simulation results, the calcium carbonate classification experimental results indicate that the classification performance of the classifier is improved using Type-BC.
期刊介绍:
Physicochemical Problems of Mineral Processing is an international, open access journal which covers theoretical approaches and their practical applications in all aspects of mineral processing and extractive metallurgy.
Criteria for publication in the Physicochemical Problems of Mineral Processing journal are novelty, quality and current interest. Manuscripts which only make routine use of minor extensions to well established methodologies are not appropriate for the journal.
Topics of interest
Analytical techniques and applied mineralogy
Computer applications
Comminution, classification and sorting
Froth flotation
Solid-liquid separation
Gravity concentration
Magnetic and electric separation
Hydro and biohydrometallurgy
Extractive metallurgy
Recycling and mineral wastes
Environmental aspects of mineral processing
and other mineral processing related subjects.