{"title":"根据矿物学特征使用煤油作为辅助收集器从难熔金矿中回收黄金","authors":"Xuesong Sun, Jianwen Yu, Jian-Zhong Jin, Hao Sun, Yanjun Li, Yuexin Han","doi":"10.3390/separations10120584","DOIUrl":null,"url":null,"abstract":"Carbon–arsenic-bearing gold ore is a typical complex refractory gold resource. Traditionally, xanthate was often used as a flotation agent to separate gold minerals. But, in this paper, in order to reduce the cost of the agent, kerosene was used as an auxiliary collector, and the gold grade and recovery rate were increased by about 10 g/t and 5.5%, respectively. Through process mineralogy studies of the raw ore, it was found that the ore has an Au grade of 5.68 g/t, most of which is surrounded by sulfide ore, accounting for 79.46%. The main minerals are pyrite, arsenopyrite, and quartz, etc. Their content, shape, particle size distribution, and occurrence state were obtained via microscopic observation and statistical analysis. According to the results of process mineralogy, various flotation conditions were tested, including grinding fineness, kerosene dosage, collector dosage, foaming agent dosage, and the slurry pH value. The optimal chemical system and the process flow of “two roughing, three cleaning and two scavenging” were finally determined, and the concentrate product with a gold grade of 42.83 g/t and recovery of 91.02% was obtained, which verified the feasibility of the kerosene-assisted xanthate flotation of refractory gold.","PeriodicalId":21833,"journal":{"name":"Separations","volume":"9 19","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using Kerosene as an Auxiliary Collector to Recover Gold from Refractory Gold Ore Based on Mineralogical Characteristics\",\"authors\":\"Xuesong Sun, Jianwen Yu, Jian-Zhong Jin, Hao Sun, Yanjun Li, Yuexin Han\",\"doi\":\"10.3390/separations10120584\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Carbon–arsenic-bearing gold ore is a typical complex refractory gold resource. Traditionally, xanthate was often used as a flotation agent to separate gold minerals. But, in this paper, in order to reduce the cost of the agent, kerosene was used as an auxiliary collector, and the gold grade and recovery rate were increased by about 10 g/t and 5.5%, respectively. Through process mineralogy studies of the raw ore, it was found that the ore has an Au grade of 5.68 g/t, most of which is surrounded by sulfide ore, accounting for 79.46%. The main minerals are pyrite, arsenopyrite, and quartz, etc. Their content, shape, particle size distribution, and occurrence state were obtained via microscopic observation and statistical analysis. According to the results of process mineralogy, various flotation conditions were tested, including grinding fineness, kerosene dosage, collector dosage, foaming agent dosage, and the slurry pH value. The optimal chemical system and the process flow of “two roughing, three cleaning and two scavenging” were finally determined, and the concentrate product with a gold grade of 42.83 g/t and recovery of 91.02% was obtained, which verified the feasibility of the kerosene-assisted xanthate flotation of refractory gold.\",\"PeriodicalId\":21833,\"journal\":{\"name\":\"Separations\",\"volume\":\"9 19\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Separations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/separations10120584\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/separations10120584","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Using Kerosene as an Auxiliary Collector to Recover Gold from Refractory Gold Ore Based on Mineralogical Characteristics
Carbon–arsenic-bearing gold ore is a typical complex refractory gold resource. Traditionally, xanthate was often used as a flotation agent to separate gold minerals. But, in this paper, in order to reduce the cost of the agent, kerosene was used as an auxiliary collector, and the gold grade and recovery rate were increased by about 10 g/t and 5.5%, respectively. Through process mineralogy studies of the raw ore, it was found that the ore has an Au grade of 5.68 g/t, most of which is surrounded by sulfide ore, accounting for 79.46%. The main minerals are pyrite, arsenopyrite, and quartz, etc. Their content, shape, particle size distribution, and occurrence state were obtained via microscopic observation and statistical analysis. According to the results of process mineralogy, various flotation conditions were tested, including grinding fineness, kerosene dosage, collector dosage, foaming agent dosage, and the slurry pH value. The optimal chemical system and the process flow of “two roughing, three cleaning and two scavenging” were finally determined, and the concentrate product with a gold grade of 42.83 g/t and recovery of 91.02% was obtained, which verified the feasibility of the kerosene-assisted xanthate flotation of refractory gold.
期刊介绍:
Separations (formerly Chromatography, ISSN 2227-9075, CODEN: CHROBV) provides an advanced forum for separation and purification science and technology in all areas of chemical, biological and physical science. It publishes reviews, regular research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal:
Manuscripts regarding research proposals and research ideas will be particularly welcomed.
Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
Manuscripts concerning summaries and surveys on research cooperation and projects (that are funded by national governments) to give information for a broad field of users.
The scope of the journal includes but is not limited to:
Theory and methodology (theory of separation methods, sample preparation, instrumental and column developments, new separation methodologies, etc.)
Equipment and techniques, novel hyphenated analytical solutions (significantly extended by their combination with spectroscopic methods and in particular, mass spectrometry)
Novel analysis approaches and applications to solve analytical challenges which utilize chromatographic separations as a key step in the overall solution
Computational modelling of separations for the purpose of fundamental understanding and/or chromatographic optimization