{"title":"确定有效高阶模式簇导波生成的最佳样品厚度和换能器位置","authors":"Che-Hua Yang, Van Nguyen Le, M. Saravana Kumar","doi":"10.1177/09544054231210014","DOIUrl":null,"url":null,"abstract":"Higher Order Mode Cluster (HOMC) guided waves (GW) have recently been proposed for ultrasonic testing of plates and pipes. The incident wave through the plastic wedge generates the HOMC-GW. A propagated distance, namely the HOMC formation field, is necessary to create the wave signal. Unfortunately, the HOMC wave is unstable in the formation region, which needs a longer distance for stability. This research examines the effect of sample thickness on the HOMC generation process. ABAQUS CAE simulated the HOMC generation in various samples with different thicknesses, such as 6, 7, 10, 15, and 20 mm. The results show that HOMC stability was achieved at a shorter distance in the smaller sample (6 mm) compared to the larger sample (20 mm). Moreover, the ABAQUS-Explicit 2D-FEA model was used for notch detection in a mild steel sample based on the HOMC status. The result shows that the transducer’s strength decreases along the formation regions, and the reflected amplitude becomes more robust when it reaches the stable region. When it travels further, the amplitude gets weaker due to the reduction in its energy. The experimental study was conducted similarly to the 2D-FEA model to compare the simulation and experimental results. The empirical findings show good agreement with the simulation results throughout notch detection. The precise distance required for the HOMC wave to become stable was determined via this work, optimizing the selection and employment of single modes.","PeriodicalId":20663,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","volume":"95 31","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determination of optimal sample thickness and positions of transducer for the effective Higher Order Mode Cluster-guided wave generation\",\"authors\":\"Che-Hua Yang, Van Nguyen Le, M. Saravana Kumar\",\"doi\":\"10.1177/09544054231210014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Higher Order Mode Cluster (HOMC) guided waves (GW) have recently been proposed for ultrasonic testing of plates and pipes. The incident wave through the plastic wedge generates the HOMC-GW. A propagated distance, namely the HOMC formation field, is necessary to create the wave signal. Unfortunately, the HOMC wave is unstable in the formation region, which needs a longer distance for stability. This research examines the effect of sample thickness on the HOMC generation process. ABAQUS CAE simulated the HOMC generation in various samples with different thicknesses, such as 6, 7, 10, 15, and 20 mm. The results show that HOMC stability was achieved at a shorter distance in the smaller sample (6 mm) compared to the larger sample (20 mm). Moreover, the ABAQUS-Explicit 2D-FEA model was used for notch detection in a mild steel sample based on the HOMC status. The result shows that the transducer’s strength decreases along the formation regions, and the reflected amplitude becomes more robust when it reaches the stable region. When it travels further, the amplitude gets weaker due to the reduction in its energy. The experimental study was conducted similarly to the 2D-FEA model to compare the simulation and experimental results. The empirical findings show good agreement with the simulation results throughout notch detection. The precise distance required for the HOMC wave to become stable was determined via this work, optimizing the selection and employment of single modes.\",\"PeriodicalId\":20663,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture\",\"volume\":\"95 31\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09544054231210014\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544054231210014","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Determination of optimal sample thickness and positions of transducer for the effective Higher Order Mode Cluster-guided wave generation
Higher Order Mode Cluster (HOMC) guided waves (GW) have recently been proposed for ultrasonic testing of plates and pipes. The incident wave through the plastic wedge generates the HOMC-GW. A propagated distance, namely the HOMC formation field, is necessary to create the wave signal. Unfortunately, the HOMC wave is unstable in the formation region, which needs a longer distance for stability. This research examines the effect of sample thickness on the HOMC generation process. ABAQUS CAE simulated the HOMC generation in various samples with different thicknesses, such as 6, 7, 10, 15, and 20 mm. The results show that HOMC stability was achieved at a shorter distance in the smaller sample (6 mm) compared to the larger sample (20 mm). Moreover, the ABAQUS-Explicit 2D-FEA model was used for notch detection in a mild steel sample based on the HOMC status. The result shows that the transducer’s strength decreases along the formation regions, and the reflected amplitude becomes more robust when it reaches the stable region. When it travels further, the amplitude gets weaker due to the reduction in its energy. The experimental study was conducted similarly to the 2D-FEA model to compare the simulation and experimental results. The empirical findings show good agreement with the simulation results throughout notch detection. The precise distance required for the HOMC wave to become stable was determined via this work, optimizing the selection and employment of single modes.
期刊介绍:
Manufacturing industries throughout the world are changing very rapidly. New concepts and methods are being developed and exploited to enable efficient and effective manufacturing. Existing manufacturing processes are being improved to meet the requirements of lean and agile manufacturing. The aim of the Journal of Engineering Manufacture is to provide a focus for these developments in engineering manufacture by publishing original papers and review papers covering technological and scientific research, developments and management implementation in manufacturing. This journal is also peer reviewed.
Contributions are welcomed in the broad areas of manufacturing processes, manufacturing technology and factory automation, digital manufacturing, design and manufacturing systems including management relevant to engineering manufacture. Of particular interest at the present time would be papers concerned with digital manufacturing, metrology enabled manufacturing, smart factory, additive manufacturing and composites as well as specialist manufacturing fields like nanotechnology, sustainable & clean manufacturing and bio-manufacturing.
Articles may be Research Papers, Reviews, Technical Notes, or Short Communications.