{"title":"GO@ 多巴胺-铜作为高效合成全取代二氢呋喃-2(5H)-酮的绿色纳米催化剂","authors":"Neda Niknam, N. Noroozi Pesyan","doi":"10.18596/jotcsa.1264129","DOIUrl":null,"url":null,"abstract":"A new nanocatalyst graphene oxide@dopamine-Cu was synthesized, and its structure was characterized by fourier transform infrared (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Energy Dispersive X-ray Spectrometry (EDX), and thermogravimetric analysis – differential thermal analysis (TGA-DTA) techniques. The three-component one-pot reaction between an arylamine, aromatic aldehyde, and acetylenic carboxylate was achieved and formed methyl 5-oxo-2-aryl-4-(arylamino)-2,5-dihydrofuran-3-carboxylate derivatives (4) in the presence of the catalytic amount of graphene oxide@dopamine-Cu nanocatalyst in high yield. Molecular structures of products were characterized by FT-IR, 1H, 13C nuclear magnetic resonance (NMR), and Mass spectroscopy techniques. Representatively, the mass fragmentation of 4a was discussed, and the structure was confirmed. Easy reaction, high performance, and easy catalyst recyclability are the main advantages of this work. This nanocatalyst is recycled up to five successive runs.","PeriodicalId":17299,"journal":{"name":"Journal of the Turkish Chemical Society Section A: Chemistry","volume":"53 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GO@dopamine-Cu as a Green Nanocatalyst for the Efficient Synthesis of Fully Substituted Dihydrofuran-2(5H)-ones\",\"authors\":\"Neda Niknam, N. Noroozi Pesyan\",\"doi\":\"10.18596/jotcsa.1264129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new nanocatalyst graphene oxide@dopamine-Cu was synthesized, and its structure was characterized by fourier transform infrared (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Energy Dispersive X-ray Spectrometry (EDX), and thermogravimetric analysis – differential thermal analysis (TGA-DTA) techniques. The three-component one-pot reaction between an arylamine, aromatic aldehyde, and acetylenic carboxylate was achieved and formed methyl 5-oxo-2-aryl-4-(arylamino)-2,5-dihydrofuran-3-carboxylate derivatives (4) in the presence of the catalytic amount of graphene oxide@dopamine-Cu nanocatalyst in high yield. Molecular structures of products were characterized by FT-IR, 1H, 13C nuclear magnetic resonance (NMR), and Mass spectroscopy techniques. Representatively, the mass fragmentation of 4a was discussed, and the structure was confirmed. Easy reaction, high performance, and easy catalyst recyclability are the main advantages of this work. This nanocatalyst is recycled up to five successive runs.\",\"PeriodicalId\":17299,\"journal\":{\"name\":\"Journal of the Turkish Chemical Society Section A: Chemistry\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Turkish Chemical Society Section A: Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18596/jotcsa.1264129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Turkish Chemical Society Section A: Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18596/jotcsa.1264129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
合成了一种新型纳米催化剂氧化石墨烯@多巴胺-铜,并通过傅立叶变换红外(FT-IR)、X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、能量色散 X 射线光谱(EDX)和热重分析-差热分析(TGA-DTA)技术对其结构进行了表征。在催化量的氧化石墨烯@多巴胺-铜纳米催化剂存在下,芳胺、芳香醛和乙炔基羧酸酯实现了三组分一锅反应,并高产率地生成了 5-氧代-2-芳基-4-(芳基氨基)-2,5-二氢呋喃-3-羧酸甲酯衍生物(4)。利用傅立叶变换红外光谱、1H、13C 核磁共振(NMR)和质谱技术对产物的分子结构进行了表征。其中,对 4a 的质量碎片进行了讨论,并确认了其结构。反应简便、性能优异、催化剂易于回收利用是这项工作的主要优点。该纳米催化剂可连续循环使用五次。
GO@dopamine-Cu as a Green Nanocatalyst for the Efficient Synthesis of Fully Substituted Dihydrofuran-2(5H)-ones
A new nanocatalyst graphene oxide@dopamine-Cu was synthesized, and its structure was characterized by fourier transform infrared (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Energy Dispersive X-ray Spectrometry (EDX), and thermogravimetric analysis – differential thermal analysis (TGA-DTA) techniques. The three-component one-pot reaction between an arylamine, aromatic aldehyde, and acetylenic carboxylate was achieved and formed methyl 5-oxo-2-aryl-4-(arylamino)-2,5-dihydrofuran-3-carboxylate derivatives (4) in the presence of the catalytic amount of graphene oxide@dopamine-Cu nanocatalyst in high yield. Molecular structures of products were characterized by FT-IR, 1H, 13C nuclear magnetic resonance (NMR), and Mass spectroscopy techniques. Representatively, the mass fragmentation of 4a was discussed, and the structure was confirmed. Easy reaction, high performance, and easy catalyst recyclability are the main advantages of this work. This nanocatalyst is recycled up to five successive runs.