关于鼓式制动器的尖叫声--通过测功机测试的时间序列数据分析和复特征值分析评估阻尼措施

IF 2.1 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Machines Pub Date : 2023-11-24 DOI:10.3390/machines11121048
Nils Gräbner, Dominik Schmid, U. von Wagner
{"title":"关于鼓式制动器的尖叫声--通过测功机测试的时间序列数据分析和复特征值分析评估阻尼措施","authors":"Nils Gräbner, Dominik Schmid, U. von Wagner","doi":"10.3390/machines11121048","DOIUrl":null,"url":null,"abstract":"Brake squeal—an audible high-frequency noise phenomenon in the range between 1 kHz and 15 kHz resulting from self-excited vibrations—is one of the main cost drivers while developing brake systems. Increasing damping is often a crucial factor in the context of self-excited vibrations. Countermeasures applied for preventing brake squeal have been investigated particularly for disk brakes in the past. However, in recent years, drum brakes have once again become more important, partly because of the issue of particle emissions. Concerning noise problems, drum brakes have a decisive advantage compared to disk brake systems in that the outer drum surface is freely accessible for applying damping devices. This paper focuses on the fundamental proving and evaluation of passive damping measures on a simplex drum brake system. To obtain a detailed understanding of the influence of additional damping on the squealing behavior of drum brakes, extensive experimental investigations are performed on a brake with an intentionally introduced high squealing tendency in the initial configuration. This made it possible to investigate the influence of different types of damping measures on their effectiveness. Techniques from the field of big data analysis and machine learning are tested to detect squeal in measured time series data. These techniques were remarkably reliable and made it possible to detect squeal efficiently even in data that was not generated on a traditional costly NVH brake dynamometer. To investigate whether the simulation method usually used for the simulation of brake squeal is applicable to depicting the influence of additional damping in drum brakes, a complex eigenvalue analysis was performed with Abaqus, and the results were compared with those from the experiments.","PeriodicalId":48519,"journal":{"name":"Machines","volume":"67 7","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Drum Brake Squeal—Assessment of Damping Measures by Time Series Data Analysis of Dynamometer Tests and Complex Eigenvalue Analyses\",\"authors\":\"Nils Gräbner, Dominik Schmid, U. von Wagner\",\"doi\":\"10.3390/machines11121048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Brake squeal—an audible high-frequency noise phenomenon in the range between 1 kHz and 15 kHz resulting from self-excited vibrations—is one of the main cost drivers while developing brake systems. Increasing damping is often a crucial factor in the context of self-excited vibrations. Countermeasures applied for preventing brake squeal have been investigated particularly for disk brakes in the past. However, in recent years, drum brakes have once again become more important, partly because of the issue of particle emissions. Concerning noise problems, drum brakes have a decisive advantage compared to disk brake systems in that the outer drum surface is freely accessible for applying damping devices. This paper focuses on the fundamental proving and evaluation of passive damping measures on a simplex drum brake system. To obtain a detailed understanding of the influence of additional damping on the squealing behavior of drum brakes, extensive experimental investigations are performed on a brake with an intentionally introduced high squealing tendency in the initial configuration. This made it possible to investigate the influence of different types of damping measures on their effectiveness. Techniques from the field of big data analysis and machine learning are tested to detect squeal in measured time series data. These techniques were remarkably reliable and made it possible to detect squeal efficiently even in data that was not generated on a traditional costly NVH brake dynamometer. To investigate whether the simulation method usually used for the simulation of brake squeal is applicable to depicting the influence of additional damping in drum brakes, a complex eigenvalue analysis was performed with Abaqus, and the results were compared with those from the experiments.\",\"PeriodicalId\":48519,\"journal\":{\"name\":\"Machines\",\"volume\":\"67 7\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machines\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/machines11121048\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/machines11121048","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

制动尖叫--一种由自激振动产生的 1 kHz 至 15 kHz 范围内可听到的高频噪声现象--是开发制动系统的主要成本驱动因素之一。增加阻尼往往是自激振动的关键因素。过去,人们一直在研究防止制动尖叫的对策,特别是针对盘式制动器。然而,近年来,鼓式制动器再次变得更加重要,部分原因是颗粒排放问题。与盘式制动器系统相比,鼓式制动器在噪音问题上有一个决定性的优势,那就是外鼓表面可以自由使用阻尼装置。本文的重点是对简易鼓式制动系统的被动阻尼措施进行基本验证和评估。为了详细了解附加阻尼对鼓式制动器尖叫行为的影响,本文对初始配置中故意引入高尖叫倾向的制动器进行了广泛的实验研究。这使得研究不同类型的阻尼措施对其效果的影响成为可能。对大数据分析和机器学习领域的技术进行了测试,以检测测量时间序列数据中的尖叫声。这些技术非常可靠,即使不是在传统的昂贵的 NVH 制动测功机上生成的数据,也能有效检测出尖叫声。为了研究通常用于模拟制动尖叫的模拟方法是否适用于描述鼓式制动器中附加阻尼的影响,使用 Abaqus 进行了复特征值分析,并将结果与实验结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On Drum Brake Squeal—Assessment of Damping Measures by Time Series Data Analysis of Dynamometer Tests and Complex Eigenvalue Analyses
Brake squeal—an audible high-frequency noise phenomenon in the range between 1 kHz and 15 kHz resulting from self-excited vibrations—is one of the main cost drivers while developing brake systems. Increasing damping is often a crucial factor in the context of self-excited vibrations. Countermeasures applied for preventing brake squeal have been investigated particularly for disk brakes in the past. However, in recent years, drum brakes have once again become more important, partly because of the issue of particle emissions. Concerning noise problems, drum brakes have a decisive advantage compared to disk brake systems in that the outer drum surface is freely accessible for applying damping devices. This paper focuses on the fundamental proving and evaluation of passive damping measures on a simplex drum brake system. To obtain a detailed understanding of the influence of additional damping on the squealing behavior of drum brakes, extensive experimental investigations are performed on a brake with an intentionally introduced high squealing tendency in the initial configuration. This made it possible to investigate the influence of different types of damping measures on their effectiveness. Techniques from the field of big data analysis and machine learning are tested to detect squeal in measured time series data. These techniques were remarkably reliable and made it possible to detect squeal efficiently even in data that was not generated on a traditional costly NVH brake dynamometer. To investigate whether the simulation method usually used for the simulation of brake squeal is applicable to depicting the influence of additional damping in drum brakes, a complex eigenvalue analysis was performed with Abaqus, and the results were compared with those from the experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Machines
Machines Multiple-
CiteScore
3.00
自引率
26.90%
发文量
1012
审稿时长
11 weeks
期刊介绍: Machines (ISSN 2075-1702) is an international, peer-reviewed journal on machinery and engineering. It publishes research articles, reviews, short communications and letters. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided. There are, in addition, unique features of this journal: *manuscripts regarding research proposals and research ideas will be particularly welcomed *electronic files or software regarding the full details of the calculation and experimental procedure - if unable to be published in a normal way - can be deposited as supplementary material Subject Areas: applications of automation, systems and control engineering, electronic engineering, mechanical engineering, computer engineering, mechatronics, robotics, industrial design, human-machine-interfaces, mechanical systems, machines and related components, machine vision, history of technology and industrial revolution, turbo machinery, machine diagnostics and prognostics (condition monitoring), machine design.
期刊最新文献
Investigative Study of the Effect of Damping and Stiffness Nonlinearities on an Electromagnetic Energy Harvester at Low-Frequency Excitations Vibration Research on Centrifugal Loop Dryer Machines Used in Plastic Recycling Processes Novel Design of Variable Stiffness Pneumatic Flexible Shaft Coupling: Determining the Mathematical-Physical Model and Potential Benefits Considerations on the Dynamics of Biofidelic Sensors in the Assessment of Human–Robot Impacts Structural Design with Self-Weight and Inertial Loading Using Simulated Annealing for Non-Gradient Topology Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1