Alex Ribeaud, Jürgen Pistner, Mathias Soulier, Julien Lumeau, Laurent Gallais, Rico Benz, Christoph Sturzenegger, B. Eiermann, Christian Mühlig, Thomas Gischkat, Sven Schröder
{"title":"用于近红外激光应用的高性能 IBS 涂层研究","authors":"Alex Ribeaud, Jürgen Pistner, Mathias Soulier, Julien Lumeau, Laurent Gallais, Rico Benz, Christoph Sturzenegger, B. Eiermann, Christian Mühlig, Thomas Gischkat, Sven Schröder","doi":"10.1117/12.2685243","DOIUrl":null,"url":null,"abstract":"In many laser applications, there is a higher and higher demand for more efficient coatings with reduced losses, in terms of absorption and scattering as those are contributing factors to diverse laser damage regimes. Ion Beam Sputtering (IBS) is a known technique to provide such high optical quality thin films. Indeed, it allows to achieve high density layers with low absorption and scattering. In this work, various coatings were developed using Bühler IBS technology. Then, total losses were measured using Cavity Ring Down, absorption using Laser Induced Deflection or Laser thermography, and Total Integrated Scatter using dedicated scatterometers. A correlation between the effect of the chosen deposition method and parameters and the measurement performances were made with the aim of a better understanding of the level and the origin of losses in the coatings. Finally, highly reflecting mirror coatings for 1064 nm wavelength were fabricated with different designs and deposition parameters. The results of the different measurements of absorption, scattering and total losses using different equipment are presented and discussed.","PeriodicalId":202227,"journal":{"name":"Laser Damage","volume":"2004 21","pages":"1272605 - 1272605-7"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of high-performance IBS coatings for near-IR laser applications\",\"authors\":\"Alex Ribeaud, Jürgen Pistner, Mathias Soulier, Julien Lumeau, Laurent Gallais, Rico Benz, Christoph Sturzenegger, B. Eiermann, Christian Mühlig, Thomas Gischkat, Sven Schröder\",\"doi\":\"10.1117/12.2685243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In many laser applications, there is a higher and higher demand for more efficient coatings with reduced losses, in terms of absorption and scattering as those are contributing factors to diverse laser damage regimes. Ion Beam Sputtering (IBS) is a known technique to provide such high optical quality thin films. Indeed, it allows to achieve high density layers with low absorption and scattering. In this work, various coatings were developed using Bühler IBS technology. Then, total losses were measured using Cavity Ring Down, absorption using Laser Induced Deflection or Laser thermography, and Total Integrated Scatter using dedicated scatterometers. A correlation between the effect of the chosen deposition method and parameters and the measurement performances were made with the aim of a better understanding of the level and the origin of losses in the coatings. Finally, highly reflecting mirror coatings for 1064 nm wavelength were fabricated with different designs and deposition parameters. The results of the different measurements of absorption, scattering and total losses using different equipment are presented and discussed.\",\"PeriodicalId\":202227,\"journal\":{\"name\":\"Laser Damage\",\"volume\":\"2004 21\",\"pages\":\"1272605 - 1272605-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Laser Damage\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2685243\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser Damage","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2685243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Study of high-performance IBS coatings for near-IR laser applications
In many laser applications, there is a higher and higher demand for more efficient coatings with reduced losses, in terms of absorption and scattering as those are contributing factors to diverse laser damage regimes. Ion Beam Sputtering (IBS) is a known technique to provide such high optical quality thin films. Indeed, it allows to achieve high density layers with low absorption and scattering. In this work, various coatings were developed using Bühler IBS technology. Then, total losses were measured using Cavity Ring Down, absorption using Laser Induced Deflection or Laser thermography, and Total Integrated Scatter using dedicated scatterometers. A correlation between the effect of the chosen deposition method and parameters and the measurement performances were made with the aim of a better understanding of the level and the origin of losses in the coatings. Finally, highly reflecting mirror coatings for 1064 nm wavelength were fabricated with different designs and deposition parameters. The results of the different measurements of absorption, scattering and total losses using different equipment are presented and discussed.