{"title":"在长途客运中传播 SARS-CoV-2 病毒病原体的可能性","authors":"R. Burdzik","doi":"10.61089/aot2023.5k2g5t42","DOIUrl":null,"url":null,"abstract":"This paper presents a description of the methodology developed for estimation of pathogen transmission in transport and the results of the case study application for long-distance passenger transport. The primary objective is to report the method developed and the application for case studies in various passenger transport services. The most important findings and achievements of the presented study are the original universal methodology to estimate the probability of pathogen transmission with full mathematical disclosure and an open process formula, to make it possible to take other specific mechanisms of virus transmission when providing transport services. The results presented conducted an analysis on the mechanisms of transmission of SARS-CoV-2 virus pathogens during the transport process, to examine the chain of events as a result of which passengers may be infected. The author proposed a new method to estimate the probability of transmission of viral pathogens using the probability theory of the sum of elementary events. This is a new approach in this area, the advantage of which is a fully explicit mathematical formula that allows the method to be applied to various cases. The findings of this study can facilitate the management of epidemic risk in passenger transport operators and government administration. It should be clearly emphasised that the developed method and estimated values are the probabilities of pathogen transmission. Estimating the probability of transmission of the SARS-CoV-2 virus pathogen is not the same as the probability of viral infection, and more so the probability of contracting COVID-19. Viral infection strongly depends on viral mechanisms, exposure doses, and contact frequency. The probability of contracting COVID-19 and its complications depends on the individual characteristics of the immune system, even with confirmed viral infection. However, it is undoubtedly that the probability of transmission of the SARS-CoV-2 virus pathogen is the most reliable measure of infection risk, which can be estimated according to the objective determinants of pathogen transmission.","PeriodicalId":53541,"journal":{"name":"Archives of Transport","volume":"63 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probability of transmission of SARS-CoV-2 virus pathogens in long-distance passenger transport\",\"authors\":\"R. Burdzik\",\"doi\":\"10.61089/aot2023.5k2g5t42\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a description of the methodology developed for estimation of pathogen transmission in transport and the results of the case study application for long-distance passenger transport. The primary objective is to report the method developed and the application for case studies in various passenger transport services. The most important findings and achievements of the presented study are the original universal methodology to estimate the probability of pathogen transmission with full mathematical disclosure and an open process formula, to make it possible to take other specific mechanisms of virus transmission when providing transport services. The results presented conducted an analysis on the mechanisms of transmission of SARS-CoV-2 virus pathogens during the transport process, to examine the chain of events as a result of which passengers may be infected. The author proposed a new method to estimate the probability of transmission of viral pathogens using the probability theory of the sum of elementary events. This is a new approach in this area, the advantage of which is a fully explicit mathematical formula that allows the method to be applied to various cases. The findings of this study can facilitate the management of epidemic risk in passenger transport operators and government administration. It should be clearly emphasised that the developed method and estimated values are the probabilities of pathogen transmission. Estimating the probability of transmission of the SARS-CoV-2 virus pathogen is not the same as the probability of viral infection, and more so the probability of contracting COVID-19. Viral infection strongly depends on viral mechanisms, exposure doses, and contact frequency. The probability of contracting COVID-19 and its complications depends on the individual characteristics of the immune system, even with confirmed viral infection. However, it is undoubtedly that the probability of transmission of the SARS-CoV-2 virus pathogen is the most reliable measure of infection risk, which can be estimated according to the objective determinants of pathogen transmission.\",\"PeriodicalId\":53541,\"journal\":{\"name\":\"Archives of Transport\",\"volume\":\"63 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Transport\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.61089/aot2023.5k2g5t42\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Transport","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.61089/aot2023.5k2g5t42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
Probability of transmission of SARS-CoV-2 virus pathogens in long-distance passenger transport
This paper presents a description of the methodology developed for estimation of pathogen transmission in transport and the results of the case study application for long-distance passenger transport. The primary objective is to report the method developed and the application for case studies in various passenger transport services. The most important findings and achievements of the presented study are the original universal methodology to estimate the probability of pathogen transmission with full mathematical disclosure and an open process formula, to make it possible to take other specific mechanisms of virus transmission when providing transport services. The results presented conducted an analysis on the mechanisms of transmission of SARS-CoV-2 virus pathogens during the transport process, to examine the chain of events as a result of which passengers may be infected. The author proposed a new method to estimate the probability of transmission of viral pathogens using the probability theory of the sum of elementary events. This is a new approach in this area, the advantage of which is a fully explicit mathematical formula that allows the method to be applied to various cases. The findings of this study can facilitate the management of epidemic risk in passenger transport operators and government administration. It should be clearly emphasised that the developed method and estimated values are the probabilities of pathogen transmission. Estimating the probability of transmission of the SARS-CoV-2 virus pathogen is not the same as the probability of viral infection, and more so the probability of contracting COVID-19. Viral infection strongly depends on viral mechanisms, exposure doses, and contact frequency. The probability of contracting COVID-19 and its complications depends on the individual characteristics of the immune system, even with confirmed viral infection. However, it is undoubtedly that the probability of transmission of the SARS-CoV-2 virus pathogen is the most reliable measure of infection risk, which can be estimated according to the objective determinants of pathogen transmission.