利用可再生能源进行工业规模绿色制氢的评估

Q. Hassan, Sameer Algburi, A. Z. Sameen, H. M. Salman
{"title":"利用可再生能源进行工业规模绿色制氢的评估","authors":"Q. Hassan, Sameer Algburi, A. Z. Sameen, H. M. Salman","doi":"10.1177/09576509231219339","DOIUrl":null,"url":null,"abstract":"The global pivot towards sustainable energy solutions necessitates a closer examination of green hydrogen production using renewable energy sources. This study aimed to assess the feasibility and efficiency of green hydrogen production on an industrial scale using solar and wind energy in Diyala city, Iraq. Experimental weather data, including solar irradiance, ambient temperature, and wind speed, were meticulously collected throughout 2022. The analysis indicated that, for wind energy, the optimum electrolyser capacity that matched a 1.5 MW wind turbine achieved a hydrogen production of 11,963 kg/year, with associated costs of $8.87/kg. In contrast, when focusing on solar energy, the ideal electrolyser capacity harmonizing with a 2 MW solar photovoltaic generated a notably higher hydrogen output of 94,432 kg/year at a more competitive cost of $6.33/kg. These findings underscore the potential economic advantages of solar-based green hydrogen production over wind-based methods in Diyala city. Furthermore, the significant difference in hydrogen production yields between the two methods emphasizes the need to optimize renewable infrastructure based on location-specific renewable resources. This study offers valuable insights into tailoring green hydrogen production strategies in regions with similar climatic conditions to Diyala and serves as a blueprint for future renewable energy-driven hydrogen production initiatives.","PeriodicalId":20705,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of industrial-scale green hydrogen production using renewable energy\",\"authors\":\"Q. Hassan, Sameer Algburi, A. Z. Sameen, H. M. Salman\",\"doi\":\"10.1177/09576509231219339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The global pivot towards sustainable energy solutions necessitates a closer examination of green hydrogen production using renewable energy sources. This study aimed to assess the feasibility and efficiency of green hydrogen production on an industrial scale using solar and wind energy in Diyala city, Iraq. Experimental weather data, including solar irradiance, ambient temperature, and wind speed, were meticulously collected throughout 2022. The analysis indicated that, for wind energy, the optimum electrolyser capacity that matched a 1.5 MW wind turbine achieved a hydrogen production of 11,963 kg/year, with associated costs of $8.87/kg. In contrast, when focusing on solar energy, the ideal electrolyser capacity harmonizing with a 2 MW solar photovoltaic generated a notably higher hydrogen output of 94,432 kg/year at a more competitive cost of $6.33/kg. These findings underscore the potential economic advantages of solar-based green hydrogen production over wind-based methods in Diyala city. Furthermore, the significant difference in hydrogen production yields between the two methods emphasizes the need to optimize renewable infrastructure based on location-specific renewable resources. This study offers valuable insights into tailoring green hydrogen production strategies in regions with similar climatic conditions to Diyala and serves as a blueprint for future renewable energy-driven hydrogen production initiatives.\",\"PeriodicalId\":20705,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09576509231219339\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09576509231219339","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

全球都在关注可持续能源解决方案,因此有必要对利用可再生能源生产绿色氢气进行更深入的研究。本研究旨在评估在伊拉克迪亚拉市利用太阳能和风能进行工业规模绿色制氢的可行性和效率。在整个 2022 年期间,对包括太阳辐照度、环境温度和风速在内的实验天气数据进行了细致的收集。分析表明,就风能而言,与 1.5 兆瓦风力涡轮机相匹配的最佳电解槽容量可实现每年 11,963 公斤的氢气产量,相关成本为 8.87 美元/公斤。相比之下,当关注太阳能时,与 2 兆瓦太阳能光伏发电装置相匹配的理想电解槽容量可产生 94,432 千克/年的氢气产量,而成本仅为 6.33 美元/千克,更具竞争力。这些发现突出表明,在迪亚拉市,太阳能绿色制氢比风能制氢具有潜在的经济优势。此外,两种方法在制氢产量上的显著差异也强调了根据特定地点的可再生资源优化可再生基础设施的必要性。这项研究为在与迪亚拉气候条件相似的地区定制绿色制氢战略提供了宝贵的见解,也为未来可再生能源驱动的制氢计划提供了蓝图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Assessment of industrial-scale green hydrogen production using renewable energy
The global pivot towards sustainable energy solutions necessitates a closer examination of green hydrogen production using renewable energy sources. This study aimed to assess the feasibility and efficiency of green hydrogen production on an industrial scale using solar and wind energy in Diyala city, Iraq. Experimental weather data, including solar irradiance, ambient temperature, and wind speed, were meticulously collected throughout 2022. The analysis indicated that, for wind energy, the optimum electrolyser capacity that matched a 1.5 MW wind turbine achieved a hydrogen production of 11,963 kg/year, with associated costs of $8.87/kg. In contrast, when focusing on solar energy, the ideal electrolyser capacity harmonizing with a 2 MW solar photovoltaic generated a notably higher hydrogen output of 94,432 kg/year at a more competitive cost of $6.33/kg. These findings underscore the potential economic advantages of solar-based green hydrogen production over wind-based methods in Diyala city. Furthermore, the significant difference in hydrogen production yields between the two methods emphasizes the need to optimize renewable infrastructure based on location-specific renewable resources. This study offers valuable insights into tailoring green hydrogen production strategies in regions with similar climatic conditions to Diyala and serves as a blueprint for future renewable energy-driven hydrogen production initiatives.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
5.90%
发文量
114
审稿时长
5.4 months
期刊介绍: The Journal of Power and Energy, Part A of the Proceedings of the Institution of Mechanical Engineers, is dedicated to publishing peer-reviewed papers of high scientific quality on all aspects of the technology of energy conversion systems.
期刊最新文献
Studies on fuels and engine attributes powered by bio-diesel and bio-oil derived from stone apple seed (Aegle marmelos) for bioenergy Analysis of the aerothermal performance of modern commercial high-pressure turbine rotors using different levels of fidelity Analytical modeling and performance improvement of an electric two-stage centrifugal compressor for fuel cell vehicles Investigations into rubbing wear behavior of honeycomb land against labyrinth fin with periodic-cell model Secondary air induced flow structures and their interplay with the temperature field in fixed bed combustors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1