利用电化学 Aptamer 生物传感器无标记检测湖水中的多柔比星

Songjia Luo, Lu Wang, Hao Qu, Lei Zheng
{"title":"利用电化学 Aptamer 生物传感器无标记检测湖水中的多柔比星","authors":"Songjia Luo, Lu Wang, Hao Qu, Lei Zheng","doi":"10.12970/2311-1755.2023.11.01","DOIUrl":null,"url":null,"abstract":"The application of electrochemical sensors to the detection of real samples is hampered by the fact that the electrode surface is often prone to adsorption of other substances that cause a non-specific current response. In addition, electroactive substances in the actual sample are prone to redox reactions on the electrode surface and affect the detection of target molecules. In this paper, we constructed a novel DOX sensor with excellent selectivity using an aptamer-modified gold electrode and used it for the label-free rapid detection of DOX in lake water. DOX molecules in solution can be captured by the aptamers immobilised on the surface of the gold electrode, followed by the DOX molecules getting electrons on the surface of the electrode and undergoing a reduction reaction. Aptamers give electrochemical sensors excellent sensitivity and selectivity. Finally, the electrochemical aptamer biosensor was successfully applied to detect DOX in lake water with a detection limit of 30 nmol/L and a detection range of 30 nmol/L–10 μmol/L.","PeriodicalId":93457,"journal":{"name":"Journal of advanced biotechnology and bioengineering","volume":"84 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Label-Free Detection of Doxorubicin in Lake Water by an Electrochemical Aptamer Biosensor\",\"authors\":\"Songjia Luo, Lu Wang, Hao Qu, Lei Zheng\",\"doi\":\"10.12970/2311-1755.2023.11.01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The application of electrochemical sensors to the detection of real samples is hampered by the fact that the electrode surface is often prone to adsorption of other substances that cause a non-specific current response. In addition, electroactive substances in the actual sample are prone to redox reactions on the electrode surface and affect the detection of target molecules. In this paper, we constructed a novel DOX sensor with excellent selectivity using an aptamer-modified gold electrode and used it for the label-free rapid detection of DOX in lake water. DOX molecules in solution can be captured by the aptamers immobilised on the surface of the gold electrode, followed by the DOX molecules getting electrons on the surface of the electrode and undergoing a reduction reaction. Aptamers give electrochemical sensors excellent sensitivity and selectivity. Finally, the electrochemical aptamer biosensor was successfully applied to detect DOX in lake water with a detection limit of 30 nmol/L and a detection range of 30 nmol/L–10 μmol/L.\",\"PeriodicalId\":93457,\"journal\":{\"name\":\"Journal of advanced biotechnology and bioengineering\",\"volume\":\"84 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of advanced biotechnology and bioengineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12970/2311-1755.2023.11.01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of advanced biotechnology and bioengineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12970/2311-1755.2023.11.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

电化学传感器在实际样品检测中的应用受到以下事实的阻碍:电极表面通常容易吸附其他物质,从而导致非特异性电流反应。此外,实际样品中的电活性物质也容易在电极表面发生氧化还原反应,影响目标分子的检测。本文利用aptamer修饰的金电极构建了一种具有优异选择性的新型DOX传感器,并将其用于湖水中DOX的无标记快速检测。溶液中的 DOX 分子可被固定在金电极表面的适配体捕获,随后 DOX 分子在电极表面获得电子并发生还原反应。适配体使电化学传感器具有出色的灵敏度和选择性。最后,电化学适配体生物传感器被成功应用于检测湖水中的 DOX,检测限为 30 nmol/L,检测范围为 30 nmol/L-10 μmol/L。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Label-Free Detection of Doxorubicin in Lake Water by an Electrochemical Aptamer Biosensor
The application of electrochemical sensors to the detection of real samples is hampered by the fact that the electrode surface is often prone to adsorption of other substances that cause a non-specific current response. In addition, electroactive substances in the actual sample are prone to redox reactions on the electrode surface and affect the detection of target molecules. In this paper, we constructed a novel DOX sensor with excellent selectivity using an aptamer-modified gold electrode and used it for the label-free rapid detection of DOX in lake water. DOX molecules in solution can be captured by the aptamers immobilised on the surface of the gold electrode, followed by the DOX molecules getting electrons on the surface of the electrode and undergoing a reduction reaction. Aptamers give electrochemical sensors excellent sensitivity and selectivity. Finally, the electrochemical aptamer biosensor was successfully applied to detect DOX in lake water with a detection limit of 30 nmol/L and a detection range of 30 nmol/L–10 μmol/L.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Label-Free Detection of Doxorubicin in Lake Water by an Electrochemical Aptamer Biosensor RetroSeeker reveals the characteristics, expression, and evolution of a large set of novel retrotransposons Launching Advanced Biotechnology to elevate biotechnology research across disciplines, from biomedicine to agriculture Water-saving techniques: physiological responses and regulatory mechanisms of crops Studying plant autophagy: challenges and recommended methodologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1