Mouncef El marghichi, Ihssan abdelkoddous El Jadli
{"title":"使用 Cheetah 优化器快速识别三二极管光伏系统的参数","authors":"Mouncef El marghichi, Ihssan abdelkoddous El Jadli","doi":"10.21014/actaimeko.v12i4.1587","DOIUrl":null,"url":null,"abstract":"This study focuses on accurate parameter identification for solar cells and photovoltaic module simulation using experimental data. To tackle the challenge of modelling these highly nonlinear systems, we propose the novel use of the Cheetah Optimizer (CO) algorithm, inspired by cheetah hunting strategies. The CO algorithm employs mathematical models and randomization parameters to balance exploration and exploitation, avoiding local optima by considering energy limitations. We demonstrate the CO algorithm's effectiveness by applying it to the three-diode model in solar photovoltaic systems, specifically the STP6-120/36 and Photowatt-PWP201 PV modules. Impressively, the CO algorithm achieves remarkably low root mean square error values of 0.0145 A and 0.0019 A, outperforming state-of-the-art methods and ensuring high accuracy. Additionally, it delivers the lowest power errors of 0.16054 W and 0.01484 W for the respective modules, highlighting its exceptional performance. The CO algorithm proves to be a promising tool for precise parameter extraction and optimization, leading to improved modelling and performance of solar photovoltaic systems.","PeriodicalId":37987,"journal":{"name":"Acta IMEKO","volume":"2 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rapid parameter identification of three diode photovoltaic systems using the Cheetah optimizer\",\"authors\":\"Mouncef El marghichi, Ihssan abdelkoddous El Jadli\",\"doi\":\"10.21014/actaimeko.v12i4.1587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study focuses on accurate parameter identification for solar cells and photovoltaic module simulation using experimental data. To tackle the challenge of modelling these highly nonlinear systems, we propose the novel use of the Cheetah Optimizer (CO) algorithm, inspired by cheetah hunting strategies. The CO algorithm employs mathematical models and randomization parameters to balance exploration and exploitation, avoiding local optima by considering energy limitations. We demonstrate the CO algorithm's effectiveness by applying it to the three-diode model in solar photovoltaic systems, specifically the STP6-120/36 and Photowatt-PWP201 PV modules. Impressively, the CO algorithm achieves remarkably low root mean square error values of 0.0145 A and 0.0019 A, outperforming state-of-the-art methods and ensuring high accuracy. Additionally, it delivers the lowest power errors of 0.16054 W and 0.01484 W for the respective modules, highlighting its exceptional performance. The CO algorithm proves to be a promising tool for precise parameter extraction and optimization, leading to improved modelling and performance of solar photovoltaic systems.\",\"PeriodicalId\":37987,\"journal\":{\"name\":\"Acta IMEKO\",\"volume\":\"2 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta IMEKO\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21014/actaimeko.v12i4.1587\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta IMEKO","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21014/actaimeko.v12i4.1587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
摘要
本研究的重点是利用实验数据准确识别太阳能电池和光伏模块模拟的参数。为了应对这些高度非线性系统建模的挑战,我们受猎豹狩猎策略的启发,提出了使用猎豹优化算法(CO)的新方法。猎豹优化算法采用数学模型和随机化参数来平衡探索和利用,通过考虑能量限制来避免局部最优。我们将 CO 算法应用于太阳能光伏系统中的三极管模型,特别是 STP6-120/36 和 Photowatt-PWP201 光伏模块,从而证明了该算法的有效性。令人印象深刻的是,CO 算法实现了 0.0145 A 和 0.0019 A 的极低均方根误差值,超越了最先进的方法,确保了高精度。此外,该算法还为相应模块提供了 0.16054 W 和 0.01484 W 的最低功率误差,彰显了其卓越的性能。事实证明,CO 算法是精确提取和优化参数的理想工具,可改善太阳能光伏系统的建模和性能。
Rapid parameter identification of three diode photovoltaic systems using the Cheetah optimizer
This study focuses on accurate parameter identification for solar cells and photovoltaic module simulation using experimental data. To tackle the challenge of modelling these highly nonlinear systems, we propose the novel use of the Cheetah Optimizer (CO) algorithm, inspired by cheetah hunting strategies. The CO algorithm employs mathematical models and randomization parameters to balance exploration and exploitation, avoiding local optima by considering energy limitations. We demonstrate the CO algorithm's effectiveness by applying it to the three-diode model in solar photovoltaic systems, specifically the STP6-120/36 and Photowatt-PWP201 PV modules. Impressively, the CO algorithm achieves remarkably low root mean square error values of 0.0145 A and 0.0019 A, outperforming state-of-the-art methods and ensuring high accuracy. Additionally, it delivers the lowest power errors of 0.16054 W and 0.01484 W for the respective modules, highlighting its exceptional performance. The CO algorithm proves to be a promising tool for precise parameter extraction and optimization, leading to improved modelling and performance of solar photovoltaic systems.
期刊介绍:
The main goal of this journal is the enhancement of academic activities of IMEKO and a wider dissemination of scientific output from IMEKO TC events. High-quality papers presented at IMEKO conferences, workshops or congresses are seleted by the event organizers and the authors are invited to publish an enhanced version of their paper in this journal. The journal also publishes scientific articles on measurement and instrumentation not related to an IMEKO event.