深度学习用于识别文件的自动分类

Blerina Vika, Elira Hoxha
{"title":"深度学习用于识别文件的自动分类","authors":"Blerina Vika, Elira Hoxha","doi":"10.18844/gjit.v13i2.9019","DOIUrl":null,"url":null,"abstract":"This paper presents a general approach for identification documents classification using deep learning models. Our study gives an explanation of the main steps that need to be followed in order to implement a classification deep learning model. We have used convolution neural networks to extract features from raw image pixels on private datasets of identification documents. The implemented models use different techniques to preprocess the images in order to improve the classification performance on the test dataset and also techniques that can offer a better generalization of the models on the classification task. The experiments demonstrate that the training time-efficiency and accuracy of the models depends on the size, numbers of the pattern for each category and type of the image preprocessing. Various techniques of optimization have been applied to improve the model’s performance and as a result we achieved the best classification accuracy of 90.4% on the test dataset.","PeriodicalId":188272,"journal":{"name":"Global Journal of Information Technology: Emerging Technologies","volume":"145 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning for Automatic Classification of Identification Documents\",\"authors\":\"Blerina Vika, Elira Hoxha\",\"doi\":\"10.18844/gjit.v13i2.9019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a general approach for identification documents classification using deep learning models. Our study gives an explanation of the main steps that need to be followed in order to implement a classification deep learning model. We have used convolution neural networks to extract features from raw image pixels on private datasets of identification documents. The implemented models use different techniques to preprocess the images in order to improve the classification performance on the test dataset and also techniques that can offer a better generalization of the models on the classification task. The experiments demonstrate that the training time-efficiency and accuracy of the models depends on the size, numbers of the pattern for each category and type of the image preprocessing. Various techniques of optimization have been applied to improve the model’s performance and as a result we achieved the best classification accuracy of 90.4% on the test dataset.\",\"PeriodicalId\":188272,\"journal\":{\"name\":\"Global Journal of Information Technology: Emerging Technologies\",\"volume\":\"145 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Journal of Information Technology: Emerging Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18844/gjit.v13i2.9019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Journal of Information Technology: Emerging Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18844/gjit.v13i2.9019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了使用深度学习模型进行识别文件分类的一般方法。我们的研究解释了实施分类深度学习模型需要遵循的主要步骤。我们使用卷积神经网络从私人身份证件数据集的原始图像像素中提取特征。实施的模型使用不同的技术对图像进行预处理,以提高在测试数据集上的分类性能,同时还使用了能在分类任务中为模型提供更好泛化的技术。实验表明,模型的训练时间效率和准确性取决于图像的大小、每个类别的模式数量以及图像预处理的类型。为了提高模型的性能,我们采用了各种优化技术,结果在测试数据集上取得了 90.4% 的最佳分类准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep Learning for Automatic Classification of Identification Documents
This paper presents a general approach for identification documents classification using deep learning models. Our study gives an explanation of the main steps that need to be followed in order to implement a classification deep learning model. We have used convolution neural networks to extract features from raw image pixels on private datasets of identification documents. The implemented models use different techniques to preprocess the images in order to improve the classification performance on the test dataset and also techniques that can offer a better generalization of the models on the classification task. The experiments demonstrate that the training time-efficiency and accuracy of the models depends on the size, numbers of the pattern for each category and type of the image preprocessing. Various techniques of optimization have been applied to improve the model’s performance and as a result we achieved the best classification accuracy of 90.4% on the test dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Identity Goods Educational Technology with Relationship to the Quality Performance During the (COVID-19) Pandemic Deep Learning for Automatic Classification of Identification Documents Motivation for Fruitful Physics Learning Cloud Computing in Healthcare Industry: A Systematic Literature Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1