Tasso Silva, Igor Gomes, Tiago Miranda, Julliana Fernandes, José Barbosa, Leonardo Guimarães
{"title":"对石油生产引起的断层再激活作为海底斜坡稳定性触发因素的水力机械数值分析","authors":"Tasso Silva, Igor Gomes, Tiago Miranda, Julliana Fernandes, José Barbosa, Leonardo Guimarães","doi":"10.28927/sr.2023.006523","DOIUrl":null,"url":null,"abstract":"Oil production in offshore regions involves the transportation of oil and gas in submarine pipelines, which are vulnerable to geological processes triggered by subsurface oil production like fault reactivation. The fault reactivation process can lead to phenomena that impact the seabed, like subsidence and fluid exudation, and can trigger instability of submarine slopes, which can result in environmental and economic damage. The present work addresses a coupled hydromechanical numerical modeling of a hypothetical case involving fault reactivation caused by oil reservoir production and its impact on an overlying submarine slope. The hypothetical case was simulated using a finite element model. The case involves a reservoir which is cut by a fault zone that reaches the seabed. The slope instability studied was induced by the injection and production of fluids in the reservoir. The fault zone is assumed to be a sealing region and a geomechanical and pressure field discontinuity within the reservoir. Int this work was used the Mohr-Coulomb elastoplastic model with Perzyna viscoplastic regularization to represent the behavior of the fault zone and the overlying submarine slope. Results showed that the fault reactivation, caused by the reservoir production, developed shear stress and shear plastic strain along the fault and through the submarine slope, causing horizontal and vertical displacements in the slope mass and acting as a trigger factor for slope stability. Pore pressure increase at the bottom of the slope structure correlated with the injection pressure artificially increased into the reservoir.","PeriodicalId":507352,"journal":{"name":"Soils and Rocks","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydro-mechanical numerical analysis of fault reactivation due petroleum production as trigger for submarine slope stability\",\"authors\":\"Tasso Silva, Igor Gomes, Tiago Miranda, Julliana Fernandes, José Barbosa, Leonardo Guimarães\",\"doi\":\"10.28927/sr.2023.006523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Oil production in offshore regions involves the transportation of oil and gas in submarine pipelines, which are vulnerable to geological processes triggered by subsurface oil production like fault reactivation. The fault reactivation process can lead to phenomena that impact the seabed, like subsidence and fluid exudation, and can trigger instability of submarine slopes, which can result in environmental and economic damage. The present work addresses a coupled hydromechanical numerical modeling of a hypothetical case involving fault reactivation caused by oil reservoir production and its impact on an overlying submarine slope. The hypothetical case was simulated using a finite element model. The case involves a reservoir which is cut by a fault zone that reaches the seabed. The slope instability studied was induced by the injection and production of fluids in the reservoir. The fault zone is assumed to be a sealing region and a geomechanical and pressure field discontinuity within the reservoir. Int this work was used the Mohr-Coulomb elastoplastic model with Perzyna viscoplastic regularization to represent the behavior of the fault zone and the overlying submarine slope. Results showed that the fault reactivation, caused by the reservoir production, developed shear stress and shear plastic strain along the fault and through the submarine slope, causing horizontal and vertical displacements in the slope mass and acting as a trigger factor for slope stability. Pore pressure increase at the bottom of the slope structure correlated with the injection pressure artificially increased into the reservoir.\",\"PeriodicalId\":507352,\"journal\":{\"name\":\"Soils and Rocks\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soils and Rocks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28927/sr.2023.006523\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soils and Rocks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28927/sr.2023.006523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hydro-mechanical numerical analysis of fault reactivation due petroleum production as trigger for submarine slope stability
Oil production in offshore regions involves the transportation of oil and gas in submarine pipelines, which are vulnerable to geological processes triggered by subsurface oil production like fault reactivation. The fault reactivation process can lead to phenomena that impact the seabed, like subsidence and fluid exudation, and can trigger instability of submarine slopes, which can result in environmental and economic damage. The present work addresses a coupled hydromechanical numerical modeling of a hypothetical case involving fault reactivation caused by oil reservoir production and its impact on an overlying submarine slope. The hypothetical case was simulated using a finite element model. The case involves a reservoir which is cut by a fault zone that reaches the seabed. The slope instability studied was induced by the injection and production of fluids in the reservoir. The fault zone is assumed to be a sealing region and a geomechanical and pressure field discontinuity within the reservoir. Int this work was used the Mohr-Coulomb elastoplastic model with Perzyna viscoplastic regularization to represent the behavior of the fault zone and the overlying submarine slope. Results showed that the fault reactivation, caused by the reservoir production, developed shear stress and shear plastic strain along the fault and through the submarine slope, causing horizontal and vertical displacements in the slope mass and acting as a trigger factor for slope stability. Pore pressure increase at the bottom of the slope structure correlated with the injection pressure artificially increased into the reservoir.