大马士革黑姑娘(Nigella damascena L.)花朵形状的新突变及其多效应和遗传模式

Q3 Agricultural and Biological Sciences Advances in horticultural science Pub Date : 2023-11-22 DOI:10.36253/ahsc-14608
V. Lyakh, A. Soroka
{"title":"大马士革黑姑娘(Nigella damascena L.)花朵形状的新突变及其多效应和遗传模式","authors":"V. Lyakh, A. Soroka","doi":"10.36253/ahsc-14608","DOIUrl":null,"url":null,"abstract":"Two mutants with short sepals were identified after ethyl methanesulfonate treatment of Nigella damascena seeds. In one of them (“shs1” gene = short sepal 1), isolated from the line with double flowers, the sepals, in addition to reduced size, were divided into several rounded lobes, which granted the flower an original rose-like appearance of ornamental value. Another mutant with reduced sepals (“shs2” gene = short sepal 2) was isolated from the line with simple flowers. The allelism test showed that these two genes were non-allelic. Both mutants as pollen parents were crossed with the same line with single flowers. In a dihybrid cross, simple flower, non-reduced sepals (wild type) × double flower, reduced sepals (“shs1” gene) F1 hybrids demonstrated a wild phenotype. F2 progeny, in addition to two parental classes, showed two recombinant classes in a 9:3:3:1 ratio, indicating that flower shape and sepal size were inherited monogenously and independently, and the plant with rose-like flowers was a double recessive homozygote. Reduced sepals (“shs2” gene) in crosses with the single flower line of wild type were inherited as a monogenic recessive trait, showing a 3:1 segregation ratio in F2. Both mutant genes had a number of similar pleiotropic effects, which, however, were different in strength. Thus, both mutant genes shortened leaf segments, divided the cotyledon leaves into several lobes, and caused disturbances in the female generative sphere, leading to a lack of seed setting. At the same time, the identification of mutants as early as at the cotyledon stage, due to the pleiotropic effect, makes it possible to select and maintain them, especially with regard to the mutant with rose-like flowers, which is highly decorative.","PeriodicalId":7339,"journal":{"name":"Advances in horticultural science","volume":"290 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New mutations of flower shape in Nigella damascena L., its pleiotropic effects and patterns of inheritance\",\"authors\":\"V. Lyakh, A. Soroka\",\"doi\":\"10.36253/ahsc-14608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two mutants with short sepals were identified after ethyl methanesulfonate treatment of Nigella damascena seeds. In one of them (“shs1” gene = short sepal 1), isolated from the line with double flowers, the sepals, in addition to reduced size, were divided into several rounded lobes, which granted the flower an original rose-like appearance of ornamental value. Another mutant with reduced sepals (“shs2” gene = short sepal 2) was isolated from the line with simple flowers. The allelism test showed that these two genes were non-allelic. Both mutants as pollen parents were crossed with the same line with single flowers. In a dihybrid cross, simple flower, non-reduced sepals (wild type) × double flower, reduced sepals (“shs1” gene) F1 hybrids demonstrated a wild phenotype. F2 progeny, in addition to two parental classes, showed two recombinant classes in a 9:3:3:1 ratio, indicating that flower shape and sepal size were inherited monogenously and independently, and the plant with rose-like flowers was a double recessive homozygote. Reduced sepals (“shs2” gene) in crosses with the single flower line of wild type were inherited as a monogenic recessive trait, showing a 3:1 segregation ratio in F2. Both mutant genes had a number of similar pleiotropic effects, which, however, were different in strength. Thus, both mutant genes shortened leaf segments, divided the cotyledon leaves into several lobes, and caused disturbances in the female generative sphere, leading to a lack of seed setting. At the same time, the identification of mutants as early as at the cotyledon stage, due to the pleiotropic effect, makes it possible to select and maintain them, especially with regard to the mutant with rose-like flowers, which is highly decorative.\",\"PeriodicalId\":7339,\"journal\":{\"name\":\"Advances in horticultural science\",\"volume\":\"290 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in horticultural science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36253/ahsc-14608\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in horticultural science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36253/ahsc-14608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

在对大马士革黑茶种子进行甲烷磺酸乙酯处理后,发现了两种萼片短小的突变体。其中一个突变体("shs1 "基因 = 短萼片 1)是从重瓣花品系中分离出来的,它的萼片除了变小外,还分成了几个圆形裂片,这使花朵呈现出具有观赏价值的原始玫瑰状外观。从单花品系中分离出了另一个萼片变小的突变体("shs2 "基因 = 短萼片 2)。等位基因测试表明,这两个基因是非等位基因。这两个突变体作为花粉亲本与同一单花品系杂交。在二杂交中,单花、萼片不退化(野生型)×双花、萼片退化("shs1 "基因)的 F1 杂交种表现出野生表型。F2 后代中,除了两个亲本类群外,还出现了两个重组类群,比例为 9:3:3:1,表明花形和萼片大小是单基因独立遗传的,开玫瑰花的植株是双隐性同源基因。与野生型单花品系杂交的萼片减少("shs2 "基因)作为单基因隐性性状遗传,在 F2 中的分离比为 3:1。两个突变基因都有一些类似的多效应,但强度不同。因此,这两个突变基因都缩短了叶片,将子叶分成几个裂片,并干扰了雌性生殖球,导致结籽不足。同时,由于多向效应,早在子叶阶段就能识别突变体,这使得选择和维持突变体成为可能,特别是具有玫瑰花状花朵的突变体,具有很强的装饰性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
New mutations of flower shape in Nigella damascena L., its pleiotropic effects and patterns of inheritance
Two mutants with short sepals were identified after ethyl methanesulfonate treatment of Nigella damascena seeds. In one of them (“shs1” gene = short sepal 1), isolated from the line with double flowers, the sepals, in addition to reduced size, were divided into several rounded lobes, which granted the flower an original rose-like appearance of ornamental value. Another mutant with reduced sepals (“shs2” gene = short sepal 2) was isolated from the line with simple flowers. The allelism test showed that these two genes were non-allelic. Both mutants as pollen parents were crossed with the same line with single flowers. In a dihybrid cross, simple flower, non-reduced sepals (wild type) × double flower, reduced sepals (“shs1” gene) F1 hybrids demonstrated a wild phenotype. F2 progeny, in addition to two parental classes, showed two recombinant classes in a 9:3:3:1 ratio, indicating that flower shape and sepal size were inherited monogenously and independently, and the plant with rose-like flowers was a double recessive homozygote. Reduced sepals (“shs2” gene) in crosses with the single flower line of wild type were inherited as a monogenic recessive trait, showing a 3:1 segregation ratio in F2. Both mutant genes had a number of similar pleiotropic effects, which, however, were different in strength. Thus, both mutant genes shortened leaf segments, divided the cotyledon leaves into several lobes, and caused disturbances in the female generative sphere, leading to a lack of seed setting. At the same time, the identification of mutants as early as at the cotyledon stage, due to the pleiotropic effect, makes it possible to select and maintain them, especially with regard to the mutant with rose-like flowers, which is highly decorative.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in horticultural science
Advances in horticultural science Agricultural and Biological Sciences-Horticulture
CiteScore
1.20
自引率
0.00%
发文量
15
审稿时长
12 weeks
期刊介绍: Advances in Horticultural Science aims to provide a forum for original investigations in horticulture, viticulture and oliviculture. The journal publishes fully refereed papers which cover applied and theoretical approaches to the most recent studies of all areas of horticulture - fruit growing, vegetable growing, viticulture, floriculture, medicinal plants, ornamental gardening, garden and landscape architecture, in temperate, subtropical and tropical regions. Papers on horticultural aspects of agronomic, breeding, biotechnology, entomology, irrigation and plant stress physiology, plant nutrition, plant protection, plant pathology, and pre and post harvest physiology, are also welcomed. The journal scope is the promotion of a sustainable increase of the quantity and quality of horticultural products and the transfer of the new knowledge in the field. Papers should report original research, should be methodologically sound and of relevance to the international scientific community. AHS publishes three types of manuscripts: Full-length - short note - review papers. Papers are published in English.
期刊最新文献
Physiological performance and fruit quality of noni (Morinda citrifolia L.) cultivated in different agro-climatic zones of Fiji Inhibition of bleaching of stored red hot pepper through appropriate postharvest technologies and practices Field evaluation of biostimulants on growth, flowering, yield, and quality of snap beans in subtropical environment Inter-annual and genotypic variation of morphological and physicochemical characters in moroccan loquat (Eriobotrya Japonica Lindil.) genotypes during two consecutive years. Biocontrol of Fusarium spp. in vitro and in vine cuttings using Bacillus sp. F62
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1