F. Arnaut, Vesna Cvetkov, Dragana M. Đurić, M. Samardzic-Petrovic
{"title":"利用 Facebook 的先知模型对贝尔格莱德-泽廖诺布尔道的 PM10 和 PM2.5 浓度进行短期预测","authors":"F. Arnaut, Vesna Cvetkov, Dragana M. Đurić, M. Samardzic-Petrovic","doi":"10.15233/gfz.2023.40.7","DOIUrl":null,"url":null,"abstract":"We demonstrate the use of Facebook's Prophet (usually just called Prophet) model for short-term air quality forecasting at Belgrade-Zeleno brdo monitoring station. To address missing data, we applied minimally-altering data distribution imputation techniques. Linear interpolation proved effective for short-term gaps (1–3 hours), hourly mean method for mid-term gaps (24–26 hours), and Hermite interpolation polynomial for long-term gaps (132–148 hours). The most significant data change was a 3.4% shift in skewness. Partitioning the time series enabled a detailed quality assessment of the Prophet model, with PM2.5 predictions being more precise than PM10. Using the longest time series for forecasting yielded absolute errors of 6.5 μg/m3 for PM10 and 2.7 μg/m3 for PM2.5. Based on 173 forecasts, we anticipate Prophet model root-mean-square values under 6.26 μg/m3 and 9.99 μg/m3 for PM2.5 and PM10 in 50% of cases. The Prophet model demonstrates several advantages and yields satisfactory results. In future research, the results obtained from the Prophet model will serve as benchmark values for other models. Additionally, the Prophet model is capable of providing satisfactory air quality forecasting results and will be utilized in future research.","PeriodicalId":50419,"journal":{"name":"Geofizika","volume":"138 ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Short-term forecasting of PM10 and PM2.5 concentrations with Facebook's Prophet Model at the Belgrade-Zeleno brdo\",\"authors\":\"F. Arnaut, Vesna Cvetkov, Dragana M. Đurić, M. Samardzic-Petrovic\",\"doi\":\"10.15233/gfz.2023.40.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We demonstrate the use of Facebook's Prophet (usually just called Prophet) model for short-term air quality forecasting at Belgrade-Zeleno brdo monitoring station. To address missing data, we applied minimally-altering data distribution imputation techniques. Linear interpolation proved effective for short-term gaps (1–3 hours), hourly mean method for mid-term gaps (24–26 hours), and Hermite interpolation polynomial for long-term gaps (132–148 hours). The most significant data change was a 3.4% shift in skewness. Partitioning the time series enabled a detailed quality assessment of the Prophet model, with PM2.5 predictions being more precise than PM10. Using the longest time series for forecasting yielded absolute errors of 6.5 μg/m3 for PM10 and 2.7 μg/m3 for PM2.5. Based on 173 forecasts, we anticipate Prophet model root-mean-square values under 6.26 μg/m3 and 9.99 μg/m3 for PM2.5 and PM10 in 50% of cases. The Prophet model demonstrates several advantages and yields satisfactory results. In future research, the results obtained from the Prophet model will serve as benchmark values for other models. Additionally, the Prophet model is capable of providing satisfactory air quality forecasting results and will be utilized in future research.\",\"PeriodicalId\":50419,\"journal\":{\"name\":\"Geofizika\",\"volume\":\"138 \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geofizika\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.15233/gfz.2023.40.7\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geofizika","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.15233/gfz.2023.40.7","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Short-term forecasting of PM10 and PM2.5 concentrations with Facebook's Prophet Model at the Belgrade-Zeleno brdo
We demonstrate the use of Facebook's Prophet (usually just called Prophet) model for short-term air quality forecasting at Belgrade-Zeleno brdo monitoring station. To address missing data, we applied minimally-altering data distribution imputation techniques. Linear interpolation proved effective for short-term gaps (1–3 hours), hourly mean method for mid-term gaps (24–26 hours), and Hermite interpolation polynomial for long-term gaps (132–148 hours). The most significant data change was a 3.4% shift in skewness. Partitioning the time series enabled a detailed quality assessment of the Prophet model, with PM2.5 predictions being more precise than PM10. Using the longest time series for forecasting yielded absolute errors of 6.5 μg/m3 for PM10 and 2.7 μg/m3 for PM2.5. Based on 173 forecasts, we anticipate Prophet model root-mean-square values under 6.26 μg/m3 and 9.99 μg/m3 for PM2.5 and PM10 in 50% of cases. The Prophet model demonstrates several advantages and yields satisfactory results. In future research, the results obtained from the Prophet model will serve as benchmark values for other models. Additionally, the Prophet model is capable of providing satisfactory air quality forecasting results and will be utilized in future research.
期刊介绍:
The Geofizika journal succeeds the Papers series (Radovi), which has been published since 1923 at the Geophysical Institute in Zagreb (current the Department of Geophysics, Faculty of Science, University of Zagreb).
Geofizika publishes contributions dealing with physics of the atmosphere, the sea and the Earth''s interior.