利用创新的集合机器学习技术预测高甘油三酯血症患者的低密度脂蛋白

Ferhat Demirci, M. Emeç, Ozlem Gursoy Doruk, Murat Ormen, Pınar Akan, Mehmet Hilal Ozcanhan
{"title":"利用创新的集合机器学习技术预测高甘油三酯血症患者的低密度脂蛋白","authors":"Ferhat Demirci, M. Emeç, Ozlem Gursoy Doruk, Murat Ormen, Pınar Akan, Mehmet Hilal Ozcanhan","doi":"10.1515/tjb-2023-0154","DOIUrl":null,"url":null,"abstract":"Abstract Objectives Determining low-density lipoprotein (LDL) is a costly and time-consuming operation, but triglyceride value above 400 (TG>400) always requires LDL measurement. Obtaining a fast LDL forecast by accurate prediction can be valuable to experts. However, if a high error margin exists, LDL prediction can be critical and unusable. Our objective is LDL value and level prediction with an error less than low total acceptable error rate (% TEa). Methods Our present work used 6392 lab records to predict the patient LDL value using state-of-the-art Artificial Intelligence methods. The designed model, p-LDL-M, predicts LDL value and class with an overall average test score of 98.70 %, using custom, hyper-parameter-tuned Ensemble Machine Learning algorithm. Results The results show that using our innovative p-LDL-M is advisable for subjects with critical TG>400. Analysis proved that our model is positively affected by the Hopkins and Friedewald equations normally used for (TG≤400). The conclusion follows that the test score performance of p-LDL-M using only (TG>400) is 7.72 % inferior to the same p-LDL-M, using Hopkins and Friedewald supported data. In addition, the test score performance of the NIH-Equ-2 for (TG>400) is much inferior to p-LDL-M prediction results. Conclusions In conclusion, obtaining an accurate and fast LDL value and level forecast for people with (TG>400) using our innovative p-LDL-M is highly recommendable.","PeriodicalId":23344,"journal":{"name":"Turkish Journal of Biochemistry","volume":"79 1","pages":"641 - 652"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of LDL in hypertriglyceridemic subjects using an innovative ensemble machine learning technique\",\"authors\":\"Ferhat Demirci, M. Emeç, Ozlem Gursoy Doruk, Murat Ormen, Pınar Akan, Mehmet Hilal Ozcanhan\",\"doi\":\"10.1515/tjb-2023-0154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Objectives Determining low-density lipoprotein (LDL) is a costly and time-consuming operation, but triglyceride value above 400 (TG>400) always requires LDL measurement. Obtaining a fast LDL forecast by accurate prediction can be valuable to experts. However, if a high error margin exists, LDL prediction can be critical and unusable. Our objective is LDL value and level prediction with an error less than low total acceptable error rate (% TEa). Methods Our present work used 6392 lab records to predict the patient LDL value using state-of-the-art Artificial Intelligence methods. The designed model, p-LDL-M, predicts LDL value and class with an overall average test score of 98.70 %, using custom, hyper-parameter-tuned Ensemble Machine Learning algorithm. Results The results show that using our innovative p-LDL-M is advisable for subjects with critical TG>400. Analysis proved that our model is positively affected by the Hopkins and Friedewald equations normally used for (TG≤400). The conclusion follows that the test score performance of p-LDL-M using only (TG>400) is 7.72 % inferior to the same p-LDL-M, using Hopkins and Friedewald supported data. In addition, the test score performance of the NIH-Equ-2 for (TG>400) is much inferior to p-LDL-M prediction results. Conclusions In conclusion, obtaining an accurate and fast LDL value and level forecast for people with (TG>400) using our innovative p-LDL-M is highly recommendable.\",\"PeriodicalId\":23344,\"journal\":{\"name\":\"Turkish Journal of Biochemistry\",\"volume\":\"79 1\",\"pages\":\"641 - 652\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Turkish Journal of Biochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/tjb-2023-0154\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/tjb-2023-0154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要 目的 测定低密度脂蛋白(LDL)是一项既费钱又费时的工作,但甘油三酯值超过 400(TG>400)就必须测量 LDL。通过准确预测来快速预报低密度脂蛋白对专家来说很有价值。但是,如果存在较高的误差范围,低密度脂蛋白预测就会变得非常关键和不可用。我们的目标是在预测低密度脂蛋白值和水平时,误差小于可接受的总误差率(% TEa)。方法 我们目前的工作使用 6392 份实验室记录,采用最先进的人工智能方法预测患者的低密度脂蛋白值。所设计的 p-LDL-M 模型使用定制的、超参数调整的集合机器学习算法预测低密度脂蛋白值和等级,总平均测试得分为 98.70%。结果 结果表明,对于临界总胆固醇大于 400 的受试者,建议使用我们创新的 p-LDL-M。分析证明,我们的模型受到通常用于(TG≤400)的霍普金斯方程和弗里德瓦尔德方程的积极影响。结论是,仅使用(TG>400)的 p-LDL-M 的测试得分性能比使用霍普金斯和弗里德瓦尔德支持数据的 p-LDL-M 差 7.72%。此外,NIH-Equ-2 对(TG>400)的测试得分性能也远逊于 p-LDL-M 预测结果。结论 总之,使用我们创新的 p-LDL-M 对(TG>400)患者进行准确、快速的低密度脂蛋白值和水平预测是非常值得推荐的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prediction of LDL in hypertriglyceridemic subjects using an innovative ensemble machine learning technique
Abstract Objectives Determining low-density lipoprotein (LDL) is a costly and time-consuming operation, but triglyceride value above 400 (TG>400) always requires LDL measurement. Obtaining a fast LDL forecast by accurate prediction can be valuable to experts. However, if a high error margin exists, LDL prediction can be critical and unusable. Our objective is LDL value and level prediction with an error less than low total acceptable error rate (% TEa). Methods Our present work used 6392 lab records to predict the patient LDL value using state-of-the-art Artificial Intelligence methods. The designed model, p-LDL-M, predicts LDL value and class with an overall average test score of 98.70 %, using custom, hyper-parameter-tuned Ensemble Machine Learning algorithm. Results The results show that using our innovative p-LDL-M is advisable for subjects with critical TG>400. Analysis proved that our model is positively affected by the Hopkins and Friedewald equations normally used for (TG≤400). The conclusion follows that the test score performance of p-LDL-M using only (TG>400) is 7.72 % inferior to the same p-LDL-M, using Hopkins and Friedewald supported data. In addition, the test score performance of the NIH-Equ-2 for (TG>400) is much inferior to p-LDL-M prediction results. Conclusions In conclusion, obtaining an accurate and fast LDL value and level forecast for people with (TG>400) using our innovative p-LDL-M is highly recommendable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CXCL12/CXCR4 as a potential axis in diagnosis and predicting disease severity in COVID-19 patients: a new perspective Human estrogen receptor alpha (ERα) targeted cyclic peptides inhibit cell growth and induce apoptosis in MCF-7 cells In vitro and in silico investigations of the pro-apoptotic activity of Opuntia ficus-indica cladode extracts against K562 cells Evaluation of the implementation of the rational use of laboratory tests in the clinical chemistry laboratory Right vagotomy alters heart rate variability temporarily and increases total choline levels in rats
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1