多维时变散射数据的无网格插值

IF 2.6 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers Pub Date : 2023-11-21 DOI:10.3390/computers12120243
Vaclav Skala, Eliska Mourycová
{"title":"多维时变散射数据的无网格插值","authors":"Vaclav Skala, Eliska Mourycová","doi":"10.3390/computers12120243","DOIUrl":null,"url":null,"abstract":"Interpolating and approximating scattered scalar and vector data is fundamental in resolving numerous engineering challenges. These methodologies predominantly rely on establishing a triangulated structure within the data domain, typically constrained to the dimensions of 2D or 3D. Subsequently, an interpolation or approximation technique is employed to yield a smooth and coherent outcome. This contribution introduces a meshless methodology founded upon radial basis functions (RBFs). This approach exhibits a nearly dimensionless character, facilitating the interpolation of data evolving over time. Specifically, it enables the interpolation of dispersed spatio-temporally varying data, allowing for interpolation within the space-time domain devoid of the conventional “time-frames”. Meshless methodologies tailored for scattered spatio-temporal data hold applicability across a spectrum of domains, encompassing the interpolation, approximation, and assessment of data originating from various sources, such as buoys, sensor networks, tsunami monitoring instruments, chemical and radiation detectors, vessel and submarine detection systems, weather forecasting models, as well as the compression and visualization of 3D vector fields, among others.","PeriodicalId":46292,"journal":{"name":"Computers","volume":"34 6","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Meshfree Interpolation of Multidimensional Time-Varying Scattered Data\",\"authors\":\"Vaclav Skala, Eliska Mourycová\",\"doi\":\"10.3390/computers12120243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Interpolating and approximating scattered scalar and vector data is fundamental in resolving numerous engineering challenges. These methodologies predominantly rely on establishing a triangulated structure within the data domain, typically constrained to the dimensions of 2D or 3D. Subsequently, an interpolation or approximation technique is employed to yield a smooth and coherent outcome. This contribution introduces a meshless methodology founded upon radial basis functions (RBFs). This approach exhibits a nearly dimensionless character, facilitating the interpolation of data evolving over time. Specifically, it enables the interpolation of dispersed spatio-temporally varying data, allowing for interpolation within the space-time domain devoid of the conventional “time-frames”. Meshless methodologies tailored for scattered spatio-temporal data hold applicability across a spectrum of domains, encompassing the interpolation, approximation, and assessment of data originating from various sources, such as buoys, sensor networks, tsunami monitoring instruments, chemical and radiation detectors, vessel and submarine detection systems, weather forecasting models, as well as the compression and visualization of 3D vector fields, among others.\",\"PeriodicalId\":46292,\"journal\":{\"name\":\"Computers\",\"volume\":\"34 6\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/computers12120243\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/computers12120243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

对分散的标量和矢量数据进行插值和近似处理,是解决众多工程难题的基础。这些方法主要依赖于在数据域内建立三角结构,通常受限于二维或三维空间。随后,采用插值或近似技术来获得平滑、连贯的结果。本文介绍了一种基于径向基函数(RBF)的无网格方法。这种方法具有近乎无量纲的特性,便于对随时间演变的数据进行插值。具体来说,它可以对分散的时空变化数据进行插值,从而在时空域内进行插值,而无需使用传统的 "时间框架"。为分散的时空数据定制的无网格方法适用于各种领域,包括对各种来源的数据进行插值、近似和评估,如浮标、传感器网络、海啸监测仪器、化学和辐射探测器、船舶和潜艇探测系统、天气预报模型,以及三维矢量场的压缩和可视化等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Meshfree Interpolation of Multidimensional Time-Varying Scattered Data
Interpolating and approximating scattered scalar and vector data is fundamental in resolving numerous engineering challenges. These methodologies predominantly rely on establishing a triangulated structure within the data domain, typically constrained to the dimensions of 2D or 3D. Subsequently, an interpolation or approximation technique is employed to yield a smooth and coherent outcome. This contribution introduces a meshless methodology founded upon radial basis functions (RBFs). This approach exhibits a nearly dimensionless character, facilitating the interpolation of data evolving over time. Specifically, it enables the interpolation of dispersed spatio-temporally varying data, allowing for interpolation within the space-time domain devoid of the conventional “time-frames”. Meshless methodologies tailored for scattered spatio-temporal data hold applicability across a spectrum of domains, encompassing the interpolation, approximation, and assessment of data originating from various sources, such as buoys, sensor networks, tsunami monitoring instruments, chemical and radiation detectors, vessel and submarine detection systems, weather forecasting models, as well as the compression and visualization of 3D vector fields, among others.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers
Computers COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
CiteScore
5.40
自引率
3.60%
发文量
153
审稿时长
11 weeks
期刊最新文献
Advanced Road Safety: Collective Perception for Probability of Collision Estimation of Connected Vehicles Forecasting of Bitcoin Illiquidity Using High-Dimensional and Textual Features Mining Negative Associations from Medical Databases Considering Frequent, Regular, Closed and Maximal Patterns Faraway, so Close: Perceptions of the Metaverse on the Edge of Madness Blockchain-Powered Gaming: Bridging Entertainment with Serious Game Objectives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1