油/水间歇润湿对存在吖啶和肉豆蔻酸的二氧化碳腐蚀的影响

IF 1.1 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Corrosion Pub Date : 2023-11-20 DOI:10.5006/4434
Neda Norooziasl, David Young, Bruce Brown, Marc Singer
{"title":"油/水间歇润湿对存在吖啶和肉豆蔻酸的二氧化碳腐蚀的影响","authors":"Neda Norooziasl, David Young, Bruce Brown, Marc Singer","doi":"10.5006/4434","DOIUrl":null,"url":null,"abstract":"The effect of a paraffinic model oil (LVT-200) containing select surface-active compounds (myristic acid and acridine) on CO2 corrosion with and without intermittent wetting has been studied. Observations have shown that the presence of myristic acid in the oil phase has no effect on corrosion behavior due to its lack of partitioning in the water phase. However, after direct contact between the oil phase containing myristic acid and the metal surface, there was a significant decrease in the corrosion rate. This phenomenon gradually diminished at pH 4.0 but was more persistent at pH 6.5. The presence of acridine in the oil phase was shown to have a strong inhibitive effect at pH 4.0, even during the partitioning step. The partitioning of acridine from the oil phase to the water phase at pH 4.0 was confirmed by Ultraviolet-Visible spectroscopy (UV-Vis) results. However, there was no inhibitive effect conferred by the presence of acridine on the corrosion rate at pH 6.5. An experimental methodology was developed that facilitated improved simulation of the effect of intermittent oil/water wetting on CO2 corrosion. The electrochemical current response during the oil/water intermittent wetting cycles showed that persistency of model oil (without surface active compounds) on the mild steel surface is only a matter of seconds. Corrosion rate measurements showed that the presence of myristic acid renders the oil layer more persistent after intermittent wetting as compared to one-time direct contact.","PeriodicalId":10717,"journal":{"name":"Corrosion","volume":"29 4","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Oil/Water Intermittent Wetting on CO2 Corrosion in the Presence of Acridine and Myristic Acid\",\"authors\":\"Neda Norooziasl, David Young, Bruce Brown, Marc Singer\",\"doi\":\"10.5006/4434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effect of a paraffinic model oil (LVT-200) containing select surface-active compounds (myristic acid and acridine) on CO2 corrosion with and without intermittent wetting has been studied. Observations have shown that the presence of myristic acid in the oil phase has no effect on corrosion behavior due to its lack of partitioning in the water phase. However, after direct contact between the oil phase containing myristic acid and the metal surface, there was a significant decrease in the corrosion rate. This phenomenon gradually diminished at pH 4.0 but was more persistent at pH 6.5. The presence of acridine in the oil phase was shown to have a strong inhibitive effect at pH 4.0, even during the partitioning step. The partitioning of acridine from the oil phase to the water phase at pH 4.0 was confirmed by Ultraviolet-Visible spectroscopy (UV-Vis) results. However, there was no inhibitive effect conferred by the presence of acridine on the corrosion rate at pH 6.5. An experimental methodology was developed that facilitated improved simulation of the effect of intermittent oil/water wetting on CO2 corrosion. The electrochemical current response during the oil/water intermittent wetting cycles showed that persistency of model oil (without surface active compounds) on the mild steel surface is only a matter of seconds. Corrosion rate measurements showed that the presence of myristic acid renders the oil layer more persistent after intermittent wetting as compared to one-time direct contact.\",\"PeriodicalId\":10717,\"journal\":{\"name\":\"Corrosion\",\"volume\":\"29 4\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Corrosion\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.5006/4434\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.5006/4434","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

研究了含有精选表面活性化合物(肉豆蔻酸和吖啶)的石蜡模型油(LVT-200)对有间歇润湿和无间歇润湿的二氧化碳腐蚀的影响。观察结果表明,油相中肉豆蔻酸的存在对腐蚀行为没有影响,这是因为肉豆蔻酸在水相中没有分配作用。然而,在含有肉豆蔻酸的油相与金属表面直接接触后,腐蚀速度明显下降。这种现象在 pH 值为 4.0 时逐渐减弱,但在 pH 值为 6.5 时更为持久。在 pH 值为 4.0 时,油相中存在的吖啶具有很强的抑制作用,甚至在分配步骤中也是如此。紫外可见光谱(UV-Vis)结果证实,在 pH 值为 4.0 时,吖啶从油相分配到了水相。然而,在 pH 值为 6.5 时,吖啶的存在对腐蚀速率没有抑制作用。所开发的实验方法有助于更好地模拟间歇性油/水润湿对 CO2 腐蚀的影响。油/水间歇润湿循环过程中的电化学电流响应表明,模型油(不含表面活性化合物)在低碳钢表面的持续时间只有几秒钟。腐蚀速率测量结果表明,与一次性直接接触相比,肉豆蔻酸的存在使油层在间歇润湿后更加持久。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of Oil/Water Intermittent Wetting on CO2 Corrosion in the Presence of Acridine and Myristic Acid
The effect of a paraffinic model oil (LVT-200) containing select surface-active compounds (myristic acid and acridine) on CO2 corrosion with and without intermittent wetting has been studied. Observations have shown that the presence of myristic acid in the oil phase has no effect on corrosion behavior due to its lack of partitioning in the water phase. However, after direct contact between the oil phase containing myristic acid and the metal surface, there was a significant decrease in the corrosion rate. This phenomenon gradually diminished at pH 4.0 but was more persistent at pH 6.5. The presence of acridine in the oil phase was shown to have a strong inhibitive effect at pH 4.0, even during the partitioning step. The partitioning of acridine from the oil phase to the water phase at pH 4.0 was confirmed by Ultraviolet-Visible spectroscopy (UV-Vis) results. However, there was no inhibitive effect conferred by the presence of acridine on the corrosion rate at pH 6.5. An experimental methodology was developed that facilitated improved simulation of the effect of intermittent oil/water wetting on CO2 corrosion. The electrochemical current response during the oil/water intermittent wetting cycles showed that persistency of model oil (without surface active compounds) on the mild steel surface is only a matter of seconds. Corrosion rate measurements showed that the presence of myristic acid renders the oil layer more persistent after intermittent wetting as compared to one-time direct contact.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Corrosion
Corrosion MATERIALS SCIENCE, MULTIDISCIPLINARY-METALLURGY & METALLURGICAL ENGINEERING
CiteScore
2.80
自引率
12.50%
发文量
97
审稿时长
3 months
期刊介绍: CORROSION is the premier research journal featuring peer-reviewed technical articles from the world’s top researchers and provides a permanent record of progress in the science and technology of corrosion prevention and control. The scope of the journal includes the latest developments in areas of corrosion metallurgy, mechanisms, predictors, cracking (sulfide stress, stress corrosion, hydrogen-induced), passivation, and CO2 corrosion. 70+ years and over 7,100 peer-reviewed articles with advances in corrosion science and engineering have been published in CORROSION. The journal publishes seven article types – original articles, invited critical reviews, technical notes, corrosion communications fast-tracked for rapid publication, special research topic issues, research letters of yearly annual conference student poster sessions, and scientific investigations of field corrosion processes. CORROSION, the Journal of Science and Engineering, serves as an important communication platform for academics, researchers, technical libraries, and universities. Articles considered for CORROSION should have significant permanent value and should accomplish at least one of the following objectives: • Contribute awareness of corrosion phenomena, • Advance understanding of fundamental process, and/or • Further the knowledge of techniques and practices used to reduce corrosion.
期刊最新文献
Short- to medium-term corrosion of mild steel in highly calcareous seawaters: effects of calcium carbonate concentration, coupon orientation and nutrient addition Corrosion behavior of X80 steel in a simulated soil solution under Square Wave Current Interference Effect of graphene on corrosion resistance of low zinc epoxy coatings applied to low-carbon steel Design and Discovery of Compositionally Complex Alloys (CCA) that Include High Corrosion Resistance Quantifying of the effects of secondary phases on corrosion in Mg-RE alloys by X-CT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1