电子自旋共振探测 Sr2IrO4 的 Dzyaloshinsky-Moriya 相互作用诱导的反常 g 行为

IF 2.6 4区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Magnetochemistry Pub Date : 2023-11-19 DOI:10.3390/magnetochemistry9110231
Kai Wang, Liqin Yan, Youguo Shi, Baogen Shen, Lunhua He, Fangwei Wang, Jun Lu, Tongyun Zhao, Zunming Lu
{"title":"电子自旋共振探测 Sr2IrO4 的 Dzyaloshinsky-Moriya 相互作用诱导的反常 g 行为","authors":"Kai Wang, Liqin Yan, Youguo Shi, Baogen Shen, Lunhua He, Fangwei Wang, Jun Lu, Tongyun Zhao, Zunming Lu","doi":"10.3390/magnetochemistry9110231","DOIUrl":null,"url":null,"abstract":"Among the 5d transition metal iridates, Sr2IrO4, which has a layered chalcogenide structure, has received much attention due to its strong spin–orbit coupling (SOC), which produces Mott insulating states and anomalous physical behaviors. In this paper, the microscopic magnetism of Sr2IrO4 is studied with electron spin resonance (ESR) measurements. The Lande factor g of the ferromagnetic resonance signal of Sr2IrO4 shows anomalous behavior compared to typical ferromagnets. It gradually decreases, and the corresponding resonance field Hr increases, with decreasing temperature. The various physical parameters. including the saturated magnetic field Hs derived from M-H, Hr, ΔHpp, the g factor and the intensity I extracted from ESR spectra, are analyzed in detail. Eventually, it is revealed that the anomalous behavior of the g-factor is induced by in-plane Dzyaloshinsky–Moriya interaction (DMI) rather than the SOC effect.","PeriodicalId":18194,"journal":{"name":"Magnetochemistry","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dzyaloshinsky–Moriya Interaction Induced Anomalous g Behavior of Sr2IrO4 Probed by Electron Spin Resonance\",\"authors\":\"Kai Wang, Liqin Yan, Youguo Shi, Baogen Shen, Lunhua He, Fangwei Wang, Jun Lu, Tongyun Zhao, Zunming Lu\",\"doi\":\"10.3390/magnetochemistry9110231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Among the 5d transition metal iridates, Sr2IrO4, which has a layered chalcogenide structure, has received much attention due to its strong spin–orbit coupling (SOC), which produces Mott insulating states and anomalous physical behaviors. In this paper, the microscopic magnetism of Sr2IrO4 is studied with electron spin resonance (ESR) measurements. The Lande factor g of the ferromagnetic resonance signal of Sr2IrO4 shows anomalous behavior compared to typical ferromagnets. It gradually decreases, and the corresponding resonance field Hr increases, with decreasing temperature. The various physical parameters. including the saturated magnetic field Hs derived from M-H, Hr, ΔHpp, the g factor and the intensity I extracted from ESR spectra, are analyzed in detail. Eventually, it is revealed that the anomalous behavior of the g-factor is induced by in-plane Dzyaloshinsky–Moriya interaction (DMI) rather than the SOC effect.\",\"PeriodicalId\":18194,\"journal\":{\"name\":\"Magnetochemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetochemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/magnetochemistry9110231\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetochemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/magnetochemistry9110231","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

在 5d 过渡金属铱酸盐中,具有层状铬化结构的 Sr2IrO4 因其强自旋轨道耦合(SOC)而备受关注,SOC 可产生莫特绝缘态和反常物理行为。本文通过电子自旋共振(ESR)测量研究了 Sr2IrO4 的微观磁性。与典型的铁磁体相比,Sr2IrO4 铁磁共振信号的兰德因子 g 显示出异常行为。它随着温度的降低而逐渐减小,相应的共振场 Hr 也随之增大。我们详细分析了各种物理参数,包括由 M-H、Hr、ΔHpp 得出的饱和磁场 Hs,以及从 ESR 光谱中提取的 g 因子和强度 I。最终发现 g 因子的反常行为是由面内 Dzyaloshinsky-Moriya 相互作用 (DMI) 而不是 SOC 效应引起的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dzyaloshinsky–Moriya Interaction Induced Anomalous g Behavior of Sr2IrO4 Probed by Electron Spin Resonance
Among the 5d transition metal iridates, Sr2IrO4, which has a layered chalcogenide structure, has received much attention due to its strong spin–orbit coupling (SOC), which produces Mott insulating states and anomalous physical behaviors. In this paper, the microscopic magnetism of Sr2IrO4 is studied with electron spin resonance (ESR) measurements. The Lande factor g of the ferromagnetic resonance signal of Sr2IrO4 shows anomalous behavior compared to typical ferromagnets. It gradually decreases, and the corresponding resonance field Hr increases, with decreasing temperature. The various physical parameters. including the saturated magnetic field Hs derived from M-H, Hr, ΔHpp, the g factor and the intensity I extracted from ESR spectra, are analyzed in detail. Eventually, it is revealed that the anomalous behavior of the g-factor is induced by in-plane Dzyaloshinsky–Moriya interaction (DMI) rather than the SOC effect.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Magnetochemistry
Magnetochemistry Chemistry-Chemistry (miscellaneous)
CiteScore
3.90
自引率
11.10%
发文量
145
审稿时长
11 weeks
期刊介绍: Magnetochemistry (ISSN 2312-7481) is a unique international, scientific open access journal on molecular magnetism, the relationship between chemical structure and magnetism and magnetic materials. Magnetochemistry publishes research articles, short communications and reviews. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
Band Structure Calculations, Magnetic Properties and Magnetocaloric Effect of GdCo1.8M0.2 Compounds with M = Fe, Mn, Cu, Al Magnetic Substrates for Tissue Engineering—A Review Impact of the Different Molecular Weights of Polyethylene Glycol (PEG) Coating Agents on the Magnetic Targeting Characteristics of Functionalized Magnetoresponsive Nanoclusters Magnon Excitation Modes in Ferromagnetic and Antiferromagnetic Systems Synergistic Effect of Magnetic Iron Oxide Nanoparticles with Medicinal Plant Extracts against Resistant Bacterial Strains
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1