YOLO: 利用无人机图像检测道路缺陷的现代物体检测算法竞争分析

IF 1.2 Q3 MULTIDISCIPLINARY SCIENCES Baghdad Science Journal Pub Date : 2023-11-19 DOI:10.21123/bsj.2023.9027
Amit Hasan Sadhin, Siti Zaiton Mohd Hashim, Hussein Samma, Nurulaqilla Khamis
{"title":"YOLO: 利用无人机图像检测道路缺陷的现代物体检测算法竞争分析","authors":"Amit Hasan Sadhin, Siti Zaiton Mohd Hashim, Hussein Samma, Nurulaqilla Khamis","doi":"10.21123/bsj.2023.9027","DOIUrl":null,"url":null,"abstract":"Efficient identification of road defects is a critical concern for road safety and infrastructure upkeep. This research employs drone-captured imagery and advanced object detection algorithms to expedite defect recognition, with a specific focus on determining the optimal algorithm for prompt and precise detection. The importance of timely road defect detection, crucial for mitigating potential hazards, remains central. A comprehensive comparative analysis of contemporary object detection algorithms, encompassing YOLOv5s, YOLOv5m, YOLOv5l, YOLOv5x, and YOLOv7. The results of this study highlight YOLOv7 as the most efficient, with a notable mAP of 68.3%, closely followed by YOLOv5l (66.8%), YOLOv5m (66.3%), YOLOv5x (66%), and YOLOv5s (63%). The integration of drone-derived imagery, capturing distinct gradients, significantly enhances defect detection accuracy. Beyond road safety, this study offers valuable insights to computer vision and machine learning practitioners. By bridging technological innovation with practical implementation, it holds potential to advance road safety and transportation infrastructure quality and the use of revolutionary drone technology.","PeriodicalId":8687,"journal":{"name":"Baghdad Science Journal","volume":"132 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"YOLO: A Competitive Analysis of Modern Object Detection Algorithms for Road Defects Detection Using Drone Images\",\"authors\":\"Amit Hasan Sadhin, Siti Zaiton Mohd Hashim, Hussein Samma, Nurulaqilla Khamis\",\"doi\":\"10.21123/bsj.2023.9027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Efficient identification of road defects is a critical concern for road safety and infrastructure upkeep. This research employs drone-captured imagery and advanced object detection algorithms to expedite defect recognition, with a specific focus on determining the optimal algorithm for prompt and precise detection. The importance of timely road defect detection, crucial for mitigating potential hazards, remains central. A comprehensive comparative analysis of contemporary object detection algorithms, encompassing YOLOv5s, YOLOv5m, YOLOv5l, YOLOv5x, and YOLOv7. The results of this study highlight YOLOv7 as the most efficient, with a notable mAP of 68.3%, closely followed by YOLOv5l (66.8%), YOLOv5m (66.3%), YOLOv5x (66%), and YOLOv5s (63%). The integration of drone-derived imagery, capturing distinct gradients, significantly enhances defect detection accuracy. Beyond road safety, this study offers valuable insights to computer vision and machine learning practitioners. By bridging technological innovation with practical implementation, it holds potential to advance road safety and transportation infrastructure quality and the use of revolutionary drone technology.\",\"PeriodicalId\":8687,\"journal\":{\"name\":\"Baghdad Science Journal\",\"volume\":\"132 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Baghdad Science Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21123/bsj.2023.9027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Baghdad Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21123/bsj.2023.9027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

有效识别道路缺陷是道路安全和基础设施维护的关键问题。本研究利用无人机捕捉的图像和先进的物体检测算法来加快缺陷识别,重点是确定最佳算法,以实现及时、精确的检测。及时发现道路缺陷对减少潜在危险至关重要,这一点仍然是核心问题。对当代物体检测算法进行了全面的比较分析,包括 YOLOv5s、YOLOv5m、YOLOv5l、YOLOv5x 和 YOLOv7。研究结果表明,YOLOv7 是最高效的算法,mAP 值高达 68.3%,紧随其后的是 YOLOv5l(66.8%)、YOLOv5m(66.3%)、YOLOv5x(66%)和 YOLOv5s(63%)。整合无人机获取的图像,捕捉明显的梯度,大大提高了缺陷检测的准确性。除道路安全外,本研究还为计算机视觉和机器学习从业人员提供了宝贵的见解。通过将技术创新与实际应用相结合,该研究有望促进道路安全、交通基础设施质量以及革命性无人机技术的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
YOLO: A Competitive Analysis of Modern Object Detection Algorithms for Road Defects Detection Using Drone Images
Efficient identification of road defects is a critical concern for road safety and infrastructure upkeep. This research employs drone-captured imagery and advanced object detection algorithms to expedite defect recognition, with a specific focus on determining the optimal algorithm for prompt and precise detection. The importance of timely road defect detection, crucial for mitigating potential hazards, remains central. A comprehensive comparative analysis of contemporary object detection algorithms, encompassing YOLOv5s, YOLOv5m, YOLOv5l, YOLOv5x, and YOLOv7. The results of this study highlight YOLOv7 as the most efficient, with a notable mAP of 68.3%, closely followed by YOLOv5l (66.8%), YOLOv5m (66.3%), YOLOv5x (66%), and YOLOv5s (63%). The integration of drone-derived imagery, capturing distinct gradients, significantly enhances defect detection accuracy. Beyond road safety, this study offers valuable insights to computer vision and machine learning practitioners. By bridging technological innovation with practical implementation, it holds potential to advance road safety and transportation infrastructure quality and the use of revolutionary drone technology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Baghdad Science Journal
Baghdad Science Journal MULTIDISCIPLINARY SCIENCES-
CiteScore
2.00
自引率
50.00%
发文量
102
审稿时长
24 weeks
期刊介绍: The journal publishes academic and applied papers dealing with recent topics and scientific concepts. Papers considered for publication in biology, chemistry, computer sciences, physics, and mathematics. Accepted papers will be freely downloaded by professors, researchers, instructors, students, and interested workers. ( Open Access) Published Papers are registered and indexed in the universal libraries.
期刊最新文献
Hopf Bifurcation of Three-Dimensional Quadratic Jerk System Employing Novel Ranking Function for Solving Fully Fuzzy Fractional Linear Programming Problems Estimation of Serum TLR-9,TNF-α, and IL-6 Levels in the Iraqi Patients Diagnosed as Acute Myelogenous Leukemia Histopathologic Changes and Molecular Characterization of Fascioliasis (a Zoonotic Disease) among Slaughtered Livestock in Erbil and Halabja Abattoirs, Kurdistan Region-Iraq Quantifying the Return of Security Investments for Technology Startups
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1