考虑长期调度的综合能源系统周期优化

IF 1.8 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Algorithms Pub Date : 2023-11-18 DOI:10.3390/a16110530
Daoyu Ye, Shengxiang Deng
{"title":"考虑长期调度的综合能源系统周期优化","authors":"Daoyu Ye, Shengxiang Deng","doi":"10.3390/a16110530","DOIUrl":null,"url":null,"abstract":"The economy and energy saving effects of integrated energy system dispatch plans are influenced by the coupling of different energy devices. In order to consider the impact of changes in equipment load rates on the optimization and scheduling of the system under long-term operation, a method for energy and component cycle optimization considering energy device capacity and load has been proposed. By improving the initial parameters of the components, energy economic parameters, and operational optimization parameters, the system is subjected to long-term scheduling and multi-cycle operational optimization analysis to evaluate the energy saving and emission reduction potential as well as the economic feasibility of the system. Finally, through numerical analysis, the effectiveness of this optimization approach in achieving energy savings, emission reductions, and cost benefits for the system is validated. Furthermore, compared to existing optimization methods, this approach also assesses the economic feasibility of the system. The case study resulted in a pre-tax IRR of 23.14% and a pre-tax NPV of 66.38 million. It is inferred that the system could generate profits over a 10-year operation period, thereby offering a more rational and cost-effective scheduling scheme for the integrated energy system.","PeriodicalId":7636,"journal":{"name":"Algorithms","volume":"20 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Period Cycle Optimization of Integrated Energy Systems with Long-Term Scheduling Consideration\",\"authors\":\"Daoyu Ye, Shengxiang Deng\",\"doi\":\"10.3390/a16110530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The economy and energy saving effects of integrated energy system dispatch plans are influenced by the coupling of different energy devices. In order to consider the impact of changes in equipment load rates on the optimization and scheduling of the system under long-term operation, a method for energy and component cycle optimization considering energy device capacity and load has been proposed. By improving the initial parameters of the components, energy economic parameters, and operational optimization parameters, the system is subjected to long-term scheduling and multi-cycle operational optimization analysis to evaluate the energy saving and emission reduction potential as well as the economic feasibility of the system. Finally, through numerical analysis, the effectiveness of this optimization approach in achieving energy savings, emission reductions, and cost benefits for the system is validated. Furthermore, compared to existing optimization methods, this approach also assesses the economic feasibility of the system. The case study resulted in a pre-tax IRR of 23.14% and a pre-tax NPV of 66.38 million. It is inferred that the system could generate profits over a 10-year operation period, thereby offering a more rational and cost-effective scheduling scheme for the integrated energy system.\",\"PeriodicalId\":7636,\"journal\":{\"name\":\"Algorithms\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algorithms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/a16110530\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/a16110530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

综合能源系统调度方案的经济性和节能效果受到不同能源设备耦合的影响。为了考虑设备负荷率变化对长期运行下系统优化调度的影响,提出了一种考虑能源设备容量和负荷的能源和组件周期优化方法。通过改进组件初始参数、能源经济参数和运行优化参数,对系统进行长期调度和多周期运行优化分析,评估系统的节能减排潜力和经济可行性。最后,通过数值分析,验证了该优化方法在实现系统节能、减排和成本效益方面的有效性。此外,与现有的优化方法相比,这种方法还能评估系统的经济可行性。案例研究的税前内部收益率为 23.14%,税前净现值为 6 638 万。据此推断,该系统可在 10 年的运营期内产生利润,从而为综合能源系统提供更合理、更具成本效益的调度方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Period Cycle Optimization of Integrated Energy Systems with Long-Term Scheduling Consideration
The economy and energy saving effects of integrated energy system dispatch plans are influenced by the coupling of different energy devices. In order to consider the impact of changes in equipment load rates on the optimization and scheduling of the system under long-term operation, a method for energy and component cycle optimization considering energy device capacity and load has been proposed. By improving the initial parameters of the components, energy economic parameters, and operational optimization parameters, the system is subjected to long-term scheduling and multi-cycle operational optimization analysis to evaluate the energy saving and emission reduction potential as well as the economic feasibility of the system. Finally, through numerical analysis, the effectiveness of this optimization approach in achieving energy savings, emission reductions, and cost benefits for the system is validated. Furthermore, compared to existing optimization methods, this approach also assesses the economic feasibility of the system. The case study resulted in a pre-tax IRR of 23.14% and a pre-tax NPV of 66.38 million. It is inferred that the system could generate profits over a 10-year operation period, thereby offering a more rational and cost-effective scheduling scheme for the integrated energy system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algorithms
Algorithms Mathematics-Numerical Analysis
CiteScore
4.10
自引率
4.30%
发文量
394
审稿时长
11 weeks
期刊最新文献
Specification Mining Based on the Ordering Points to Identify the Clustering Structure Clustering Algorithm and Model Checking Personalized Advertising in E-Commerce: Using Clickstream Data to Target High-Value Customers Navigating the Maps: Euclidean vs. Road Network Distances in Spatial Queries Hybrid Sparrow Search-Exponential Distribution Optimization with Differential Evolution for Parameter Prediction of Solar Photovoltaic Models Particle Swarm Optimization-Based Unconstrained Polygonal Fitting of 2D Shapes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1