{"title":"一种新型液冷电池热管理系统,带有基于仿生分形通道的冷却板","authors":"Zhiguo Tang, Yi Xiang, Man Li, Jianping Cheng","doi":"10.1115/1.4064095","DOIUrl":null,"url":null,"abstract":"An effective battery thermal management system (BTMS) is necessary to quickly release the heat generated by power batteries under high discharge rate and ensure the safe operation of electric vehicles. Inspired by the biomimetic structure in nature, a novel liquid cooling BTMS with a cooling plate based on biomimetic fractal structure was proposed. By developing the physical model of the BTMS, numerical calculations were conducted to analyze the impacts of the structural parameters of the cooling plate and the inlet velocity of the coolant on the thermal performance of the batteries. The results showed that the cooling plate can meet the heat dissipation requirements of high temperature uniformity for the batteries under high discharge rate, especially under the extreme uniform channel distribution mode for the adjacent fractal branch at the same level. Moreover, the increase of the group number of fractal branches can improve the cooling capacity of the cooling plate and reduce the pressure drop of the coolant. The increase of the level number of channels, the length ratio, and the inlet velocity of the coolant can enhance the cooling capacity. However, these methods of enhancing heat transfer require more pump power consumption. When the group number of fractal branches is 4, the level number of channels is 3, the length ratio is 1 and the inlet velocity of the coolant is 0.5 m/s, the BTMS can control the maximum temperature and maximum temperature difference of the batteries under 4C-rate discharge within 31.68 °C and 4.15 °C, respectively. Finally, orthogonal test was conducted on four factors: the group number of fractal branches, the level number of channels, the length ratio and the inlet velocity of the coolant. The results showed that the level number of branches is the most important structural parameter.","PeriodicalId":15579,"journal":{"name":"Journal of Electrochemical Energy Conversion and Storage","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel liquid cooling battery thermal management system with a cooling plate based on biomimetic fractal channels\",\"authors\":\"Zhiguo Tang, Yi Xiang, Man Li, Jianping Cheng\",\"doi\":\"10.1115/1.4064095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An effective battery thermal management system (BTMS) is necessary to quickly release the heat generated by power batteries under high discharge rate and ensure the safe operation of electric vehicles. Inspired by the biomimetic structure in nature, a novel liquid cooling BTMS with a cooling plate based on biomimetic fractal structure was proposed. By developing the physical model of the BTMS, numerical calculations were conducted to analyze the impacts of the structural parameters of the cooling plate and the inlet velocity of the coolant on the thermal performance of the batteries. The results showed that the cooling plate can meet the heat dissipation requirements of high temperature uniformity for the batteries under high discharge rate, especially under the extreme uniform channel distribution mode for the adjacent fractal branch at the same level. Moreover, the increase of the group number of fractal branches can improve the cooling capacity of the cooling plate and reduce the pressure drop of the coolant. The increase of the level number of channels, the length ratio, and the inlet velocity of the coolant can enhance the cooling capacity. However, these methods of enhancing heat transfer require more pump power consumption. When the group number of fractal branches is 4, the level number of channels is 3, the length ratio is 1 and the inlet velocity of the coolant is 0.5 m/s, the BTMS can control the maximum temperature and maximum temperature difference of the batteries under 4C-rate discharge within 31.68 °C and 4.15 °C, respectively. Finally, orthogonal test was conducted on four factors: the group number of fractal branches, the level number of channels, the length ratio and the inlet velocity of the coolant. The results showed that the level number of branches is the most important structural parameter.\",\"PeriodicalId\":15579,\"journal\":{\"name\":\"Journal of Electrochemical Energy Conversion and Storage\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electrochemical Energy Conversion and Storage\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4064095\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrochemical Energy Conversion and Storage","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4064095","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
A novel liquid cooling battery thermal management system with a cooling plate based on biomimetic fractal channels
An effective battery thermal management system (BTMS) is necessary to quickly release the heat generated by power batteries under high discharge rate and ensure the safe operation of electric vehicles. Inspired by the biomimetic structure in nature, a novel liquid cooling BTMS with a cooling plate based on biomimetic fractal structure was proposed. By developing the physical model of the BTMS, numerical calculations were conducted to analyze the impacts of the structural parameters of the cooling plate and the inlet velocity of the coolant on the thermal performance of the batteries. The results showed that the cooling plate can meet the heat dissipation requirements of high temperature uniformity for the batteries under high discharge rate, especially under the extreme uniform channel distribution mode for the adjacent fractal branch at the same level. Moreover, the increase of the group number of fractal branches can improve the cooling capacity of the cooling plate and reduce the pressure drop of the coolant. The increase of the level number of channels, the length ratio, and the inlet velocity of the coolant can enhance the cooling capacity. However, these methods of enhancing heat transfer require more pump power consumption. When the group number of fractal branches is 4, the level number of channels is 3, the length ratio is 1 and the inlet velocity of the coolant is 0.5 m/s, the BTMS can control the maximum temperature and maximum temperature difference of the batteries under 4C-rate discharge within 31.68 °C and 4.15 °C, respectively. Finally, orthogonal test was conducted on four factors: the group number of fractal branches, the level number of channels, the length ratio and the inlet velocity of the coolant. The results showed that the level number of branches is the most important structural parameter.
期刊介绍:
The Journal of Electrochemical Energy Conversion and Storage focuses on processes, components, devices and systems that store and convert electrical and chemical energy. This journal publishes peer-reviewed archival scholarly articles, research papers, technical briefs, review articles, perspective articles, and special volumes. Specific areas of interest include electrochemical engineering, electrocatalysis, novel materials, analysis and design of components, devices, and systems, balance of plant, novel numerical and analytical simulations, advanced materials characterization, innovative material synthesis and manufacturing methods, thermal management, reliability, durability, and damage tolerance.