通过时间和角度分辨光发射揭示 ZrTe5 中拓扑相的光学操作

IF 1.5 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Chinese Physics B Pub Date : 2023-11-17 DOI:10.1088/1674-1056/ad0d9d
Chaozhi Huang, Chengyang Xu, F. Zhu, Shaofeng Duan, Jianzhe Liu, Lingxiao Gu, Shichong Wang, Haoran Liu, Dong Qian, Weidong Luo, Wentao Zhang
{"title":"通过时间和角度分辨光发射揭示 ZrTe5 中拓扑相的光学操作","authors":"Chaozhi Huang, Chengyang Xu, F. Zhu, Shaofeng Duan, Jianzhe Liu, Lingxiao Gu, Shichong Wang, Haoran Liu, Dong Qian, Weidong Luo, Wentao Zhang","doi":"10.1088/1674-1056/ad0d9d","DOIUrl":null,"url":null,"abstract":"High-resolution time- and angle-resolved photoemission measurements were conducted on the topological insulator ZrTe5. With strong femtosecond photoexcitation, a possible ultrafast phase transition from a weak to a strong topological insulating phase was experimentally realized by recovering the energy gap inversion in a time scale that was shorter than 0.15 ps. This photoinduced transient strong topological phase can last longer than 2 ps at the highest excitation fluence studied, and it cannot be attributed to the photoinduced heating of electrons or modification of the conduction band filling. Additionally, the measured unoccupied electronic states are consistent with the first-principles calculation based on experimental crystal lattice constants, which favor a strong topological insulating phase. These findings provide new insights into the longstanding controversy about the strong and weak topological properties in ZrTe5, and they suggest that many-body effects including electron–electron interactions must be taken into account to understand the equilibrium weak topological insulating phase in ZrTe5.","PeriodicalId":10253,"journal":{"name":"Chinese Physics B","volume":"39 5","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optical manipulation of the topological phase in ZrTe5 revealed by time- and angle-resolved photoemission\",\"authors\":\"Chaozhi Huang, Chengyang Xu, F. Zhu, Shaofeng Duan, Jianzhe Liu, Lingxiao Gu, Shichong Wang, Haoran Liu, Dong Qian, Weidong Luo, Wentao Zhang\",\"doi\":\"10.1088/1674-1056/ad0d9d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-resolution time- and angle-resolved photoemission measurements were conducted on the topological insulator ZrTe5. With strong femtosecond photoexcitation, a possible ultrafast phase transition from a weak to a strong topological insulating phase was experimentally realized by recovering the energy gap inversion in a time scale that was shorter than 0.15 ps. This photoinduced transient strong topological phase can last longer than 2 ps at the highest excitation fluence studied, and it cannot be attributed to the photoinduced heating of electrons or modification of the conduction band filling. Additionally, the measured unoccupied electronic states are consistent with the first-principles calculation based on experimental crystal lattice constants, which favor a strong topological insulating phase. These findings provide new insights into the longstanding controversy about the strong and weak topological properties in ZrTe5, and they suggest that many-body effects including electron–electron interactions must be taken into account to understand the equilibrium weak topological insulating phase in ZrTe5.\",\"PeriodicalId\":10253,\"journal\":{\"name\":\"Chinese Physics B\",\"volume\":\"39 5\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Physics B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1674-1056/ad0d9d\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Physics B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1674-1056/ad0d9d","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

对拓扑绝缘体 ZrTe5 进行了高分辨率时间和角度分辨光发射测量。在强飞秒光激发下,通过在短于 0.15 ps 的时间尺度内恢复能隙反转,实验实现了从弱拓扑绝缘相到强拓扑绝缘相的超快相变。在所研究的最高激发通量下,这种光诱导的瞬态强拓扑相位可持续超过 2 ps,而且它不能归因于电子的光诱导加热或导带填充的改变。此外,测得的未占电子态与基于实验晶格常数的第一原理计算结果一致,这有利于强拓扑绝缘相。这些发现为长期以来关于 ZrTe5 强弱拓扑特性的争议提供了新的见解,并表明要理解 ZrTe5 中的平衡弱拓扑绝缘相,必须考虑包括电子-电子相互作用在内的多体效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optical manipulation of the topological phase in ZrTe5 revealed by time- and angle-resolved photoemission
High-resolution time- and angle-resolved photoemission measurements were conducted on the topological insulator ZrTe5. With strong femtosecond photoexcitation, a possible ultrafast phase transition from a weak to a strong topological insulating phase was experimentally realized by recovering the energy gap inversion in a time scale that was shorter than 0.15 ps. This photoinduced transient strong topological phase can last longer than 2 ps at the highest excitation fluence studied, and it cannot be attributed to the photoinduced heating of electrons or modification of the conduction band filling. Additionally, the measured unoccupied electronic states are consistent with the first-principles calculation based on experimental crystal lattice constants, which favor a strong topological insulating phase. These findings provide new insights into the longstanding controversy about the strong and weak topological properties in ZrTe5, and they suggest that many-body effects including electron–electron interactions must be taken into account to understand the equilibrium weak topological insulating phase in ZrTe5.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chinese Physics B
Chinese Physics B 物理-物理:综合
CiteScore
2.80
自引率
23.50%
发文量
15667
审稿时长
2.4 months
期刊介绍: Chinese Physics B is an international journal covering the latest developments and achievements in all branches of physics worldwide (with the exception of nuclear physics and physics of elementary particles and fields, which is covered by Chinese Physics C). It publishes original research papers and rapid communications reflecting creative and innovative achievements across the field of physics, as well as review articles covering important accomplishments in the frontiers of physics. Subject coverage includes: Condensed matter physics and the physics of materials Atomic, molecular and optical physics Statistical, nonlinear and soft matter physics Plasma physics Interdisciplinary physics.
期刊最新文献
Coupling and characterization of a Si/SiGe triple quantum dot array with a microwave resonator Probing nickelate superconductors at atomic scale: A STEM review In-situ deposited anti-aging TiN capping layer for Nb superconducting quantum circuits Quantum confinement of carriers in the type-I quantum wells structure Preparation and magnetic hardening of low Ti content (Sm,Zr)(Fe,Co,Ti)12 magnets by rapid solidification non-equilibrium method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1