德国北海专属经济区海上风电场规划近期再分析质量的相互比较

Q2 Earth and Planetary Sciences Advances in Science and Research Pub Date : 2023-11-17 DOI:10.5194/asr-20-109-2023
T. Spangehl, M. Borsche, Deborah Niermann, Frank Kaspar, S. Schimanke, Susanne Brienen, Thomas Möller, Maren Brast
{"title":"德国北海专属经济区海上风电场规划近期再分析质量的相互比较","authors":"T. Spangehl, M. Borsche, Deborah Niermann, Frank Kaspar, S. Schimanke, Susanne Brienen, Thomas Möller, Maren Brast","doi":"10.5194/asr-20-109-2023","DOIUrl":null,"url":null,"abstract":"Abstract. In order to facilitate offshore wind farm tenders, Deutscher Wetterdienst (DWD, Germany's national meteorological service) provides reanalysis data and quality assessments to Bundesamt für Seeschifffahrt und Hydrographie (BSH, Federal Maritime and Hydrographic Agency). The regional reanalysis COSMO-REA6 is used besides the global reanalysis ERA5. New reanalyses and derived products getting available are (i) the regional reanalysis CERRA (C3S), (ii) COSMO-R6G2, a successor of COSMO-REA6 which is currently produced by DWD and (iii) HoKliSim-De, a convection-permitting climate simulation for Germany with COSMO-CLM as a regional downscaling of ERA5. In the present study, the quality of the different data sets for offshore wind energy application is compared using in-situ measurements of the wind speed and wind direction from the top anemometer and vane of the FINO1 research platform and satellite-based data of the near-surface wind speed from the Copernicus Marine Environment Monitoring Service (CMEMS) and the EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF). Evaluation at FINO1 focuses on the time period prior to the installation of nearby wind farms to avoid wake effects. COSMO-REA6, CERRA and HoKliSim-De show only small biases and resemble the observed distribution of the wind speed at FINO1 whereas ERA5 shows slightly lower values of the wind speed at 100 m. All model-based products tend to slightly underestimate the occurrence of south-westerly wind directions and overestimate wind directions from West to Northwest. Smallest directional biases are analysed for COSMO-REA6. Analysis of the windstorm CHRISTIAN suggests that ensemble information is required for the representation of individual extreme events. Evaluation of the near-surface wind speed using satellite-based data is performed for an area around the German Exclusive Economic Zone (EEZ) of the North Sea. The median bias of ERA5 and COSMO-REA6 is close to zero. CERRA shows a systematic overestimation of the near-surface wind speed compared to the satellite-based reference datasets. By contrast, a slight underestimation is analysed for HoKliSim-De. The bias distribution analysed for a first simulation stream of COSMO-R6G2 is similar to COSMO-REA6 which provides initial indication for the applicability of the new product.","PeriodicalId":30081,"journal":{"name":"Advances in Science and Research","volume":"4 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intercomparing the quality of recent reanalyses for offshore wind farm planning in Germany's exclusive economic zone of the North Sea\",\"authors\":\"T. Spangehl, M. Borsche, Deborah Niermann, Frank Kaspar, S. Schimanke, Susanne Brienen, Thomas Möller, Maren Brast\",\"doi\":\"10.5194/asr-20-109-2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. In order to facilitate offshore wind farm tenders, Deutscher Wetterdienst (DWD, Germany's national meteorological service) provides reanalysis data and quality assessments to Bundesamt für Seeschifffahrt und Hydrographie (BSH, Federal Maritime and Hydrographic Agency). The regional reanalysis COSMO-REA6 is used besides the global reanalysis ERA5. New reanalyses and derived products getting available are (i) the regional reanalysis CERRA (C3S), (ii) COSMO-R6G2, a successor of COSMO-REA6 which is currently produced by DWD and (iii) HoKliSim-De, a convection-permitting climate simulation for Germany with COSMO-CLM as a regional downscaling of ERA5. In the present study, the quality of the different data sets for offshore wind energy application is compared using in-situ measurements of the wind speed and wind direction from the top anemometer and vane of the FINO1 research platform and satellite-based data of the near-surface wind speed from the Copernicus Marine Environment Monitoring Service (CMEMS) and the EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF). Evaluation at FINO1 focuses on the time period prior to the installation of nearby wind farms to avoid wake effects. COSMO-REA6, CERRA and HoKliSim-De show only small biases and resemble the observed distribution of the wind speed at FINO1 whereas ERA5 shows slightly lower values of the wind speed at 100 m. All model-based products tend to slightly underestimate the occurrence of south-westerly wind directions and overestimate wind directions from West to Northwest. Smallest directional biases are analysed for COSMO-REA6. Analysis of the windstorm CHRISTIAN suggests that ensemble information is required for the representation of individual extreme events. Evaluation of the near-surface wind speed using satellite-based data is performed for an area around the German Exclusive Economic Zone (EEZ) of the North Sea. The median bias of ERA5 and COSMO-REA6 is close to zero. CERRA shows a systematic overestimation of the near-surface wind speed compared to the satellite-based reference datasets. By contrast, a slight underestimation is analysed for HoKliSim-De. The bias distribution analysed for a first simulation stream of COSMO-R6G2 is similar to COSMO-REA6 which provides initial indication for the applicability of the new product.\",\"PeriodicalId\":30081,\"journal\":{\"name\":\"Advances in Science and Research\",\"volume\":\"4 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Science and Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/asr-20-109-2023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Science and Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/asr-20-109-2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

摘要

摘要为方便海上风电场招标,德国国家气象局(DWD)向联邦海洋和水文局(BSH)提供再分析数据和质量评估。除全球再分析 ERA5 外,还使用区域再分析 COSMO-REA6。新的再分析和衍生产品有:(i) 区域再分析 CERRA (C3S);(ii) COSMO-R6G2,这是 COSMO-REA6 的后续产品,目前由 DWD 生产;(iii) HoKliSim-De,这是德国的对流允许气候模拟,采用 COSMO-CLM 作为 ERA5 的区域降尺度。在本研究中,利用 FINO1 研究平台顶部风速计和风向标的现场风速和风向测量数据,以及哥白尼海洋环境监测服务(CMEMS)和欧洲气象卫星应用组织气候监测卫星应用设施(CM SAF)的近地面风速卫星数据,对海上风能应用的不同数据集的质量进行了比较。FINO1 的评估侧重于附近风电场安装之前的时间段,以避免尾流效应。COSMO-REA6、CERRA 和 HoKliSim-De 显示的偏差很小,与 FINO1 观测到的风速分布相似,而 ERA5 显示的 100 米处风速值略低。所有基于模式的产品都倾向于略微低估西南风向的出现,高估从西部到西北部的风向。COSMO-REA6 的风向偏差最小。对风暴 CHRISTIAN 的分析表明,在表示单个极端事件时需要集合信息。利用卫星数据对北海德国专属经济区(EEZ)周围地区的近地表风速进行了评估。ERA5和COSMO-REA6的偏差中值接近于零。与基于卫星的参考数据集相比,CERRA 显示近地面风速被系统地高估了。相比之下,HoKliSim-De 的分析结果略有低估。对 COSMO-R6G2 第一模拟流进行分析后发现,其偏差分布与 COSMO-REA6 相似,这初步表明了新产品的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Intercomparing the quality of recent reanalyses for offshore wind farm planning in Germany's exclusive economic zone of the North Sea
Abstract. In order to facilitate offshore wind farm tenders, Deutscher Wetterdienst (DWD, Germany's national meteorological service) provides reanalysis data and quality assessments to Bundesamt für Seeschifffahrt und Hydrographie (BSH, Federal Maritime and Hydrographic Agency). The regional reanalysis COSMO-REA6 is used besides the global reanalysis ERA5. New reanalyses and derived products getting available are (i) the regional reanalysis CERRA (C3S), (ii) COSMO-R6G2, a successor of COSMO-REA6 which is currently produced by DWD and (iii) HoKliSim-De, a convection-permitting climate simulation for Germany with COSMO-CLM as a regional downscaling of ERA5. In the present study, the quality of the different data sets for offshore wind energy application is compared using in-situ measurements of the wind speed and wind direction from the top anemometer and vane of the FINO1 research platform and satellite-based data of the near-surface wind speed from the Copernicus Marine Environment Monitoring Service (CMEMS) and the EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF). Evaluation at FINO1 focuses on the time period prior to the installation of nearby wind farms to avoid wake effects. COSMO-REA6, CERRA and HoKliSim-De show only small biases and resemble the observed distribution of the wind speed at FINO1 whereas ERA5 shows slightly lower values of the wind speed at 100 m. All model-based products tend to slightly underestimate the occurrence of south-westerly wind directions and overestimate wind directions from West to Northwest. Smallest directional biases are analysed for COSMO-REA6. Analysis of the windstorm CHRISTIAN suggests that ensemble information is required for the representation of individual extreme events. Evaluation of the near-surface wind speed using satellite-based data is performed for an area around the German Exclusive Economic Zone (EEZ) of the North Sea. The median bias of ERA5 and COSMO-REA6 is close to zero. CERRA shows a systematic overestimation of the near-surface wind speed compared to the satellite-based reference datasets. By contrast, a slight underestimation is analysed for HoKliSim-De. The bias distribution analysed for a first simulation stream of COSMO-R6G2 is similar to COSMO-REA6 which provides initial indication for the applicability of the new product.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Science and Research
Advances in Science and Research Earth and Planetary Sciences-Geophysics
CiteScore
4.10
自引率
0.00%
发文量
13
审稿时长
22 weeks
期刊最新文献
Mesoscale weather influenced by auroral gravity waves contributing to conditional symmetric instability release? Probabilistic end-to-end irradiance forecasting through pre-trained deep learning models using all-sky-images Intercomparing the quality of recent reanalyses for offshore wind farm planning in Germany's exclusive economic zone of the North Sea Internal boundary layer characteristics at the southern Bulgarian Black Sea coast Recent improvements in the E-OBS gridded data set for daily mean wind speed over Europe in the period 1980–2021
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1