利用蜂群智能搜索 NK 景观:局限性与未来研究机会

IF 1.8 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Algorithms Pub Date : 2023-11-16 DOI:10.3390/a16110527
Ren-Raw Chen, Cameron D. Miller, P. Toh
{"title":"利用蜂群智能搜索 NK 景观:局限性与未来研究机会","authors":"Ren-Raw Chen, Cameron D. Miller, P. Toh","doi":"10.3390/a16110527","DOIUrl":null,"url":null,"abstract":"Swarm intelligence has promising applications for firm search and decision-choice problems and is particularly well suited for examining how other firms influence the focal firm’s search. To evaluate search performance, researchers examining firm search through simulation models typically build a performance landscape. The NK model is the leading tool used for this purpose in the management science literature. We assess the usefulness of the NK landscape for simulated swarm search. We find that the strength of the swarm model for examining firm search and decision-choice problems—the ability to model the influence of other firms on the focal firm—is limited to the NK landscape. Researchers will need alternative ways to create a performance landscape in order to use our full swarm model in simulations. We also identify multiple opportunities—endogenous landscapes, agent-specific landscapes, incomplete information, and costly movements—that future researchers can include in landscape development to gain the maximum insights from swarm-based firm search simulations.","PeriodicalId":7636,"journal":{"name":"Algorithms","volume":"37 6","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Search on an NK Landscape with Swarm Intelligence: Limitations and Future Research Opportunities\",\"authors\":\"Ren-Raw Chen, Cameron D. Miller, P. Toh\",\"doi\":\"10.3390/a16110527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Swarm intelligence has promising applications for firm search and decision-choice problems and is particularly well suited for examining how other firms influence the focal firm’s search. To evaluate search performance, researchers examining firm search through simulation models typically build a performance landscape. The NK model is the leading tool used for this purpose in the management science literature. We assess the usefulness of the NK landscape for simulated swarm search. We find that the strength of the swarm model for examining firm search and decision-choice problems—the ability to model the influence of other firms on the focal firm—is limited to the NK landscape. Researchers will need alternative ways to create a performance landscape in order to use our full swarm model in simulations. We also identify multiple opportunities—endogenous landscapes, agent-specific landscapes, incomplete information, and costly movements—that future researchers can include in landscape development to gain the maximum insights from swarm-based firm search simulations.\",\"PeriodicalId\":7636,\"journal\":{\"name\":\"Algorithms\",\"volume\":\"37 6\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algorithms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/a16110527\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/a16110527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

蜂群智能在企业搜索和决策选择问题上有着广阔的应用前景,尤其适用于研究其他企业如何影响焦点企业的搜索。为了评估搜索绩效,研究人员通常会通过仿真模型建立一个绩效景观来研究企业搜索。NK 模型是管理科学文献中用于此目的的主要工具。我们评估了 NK 景观对模拟蜂群搜索的实用性。我们发现,蜂群模型在研究公司搜索和决策选择问题方面的优势--模拟其他公司对焦点公司影响的能力--仅限于 NK 景观。研究人员需要采用其他方法来创建绩效格局,以便在模拟中使用我们的完整蜂群模型。我们还发现了多种机会--内生景观、代理特定景观、不完全信息和代价高昂的移动--未来的研究人员可以将这些机会纳入景观开发中,以便从基于蜂群的企业搜索模拟中获得最大的洞察力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Search on an NK Landscape with Swarm Intelligence: Limitations and Future Research Opportunities
Swarm intelligence has promising applications for firm search and decision-choice problems and is particularly well suited for examining how other firms influence the focal firm’s search. To evaluate search performance, researchers examining firm search through simulation models typically build a performance landscape. The NK model is the leading tool used for this purpose in the management science literature. We assess the usefulness of the NK landscape for simulated swarm search. We find that the strength of the swarm model for examining firm search and decision-choice problems—the ability to model the influence of other firms on the focal firm—is limited to the NK landscape. Researchers will need alternative ways to create a performance landscape in order to use our full swarm model in simulations. We also identify multiple opportunities—endogenous landscapes, agent-specific landscapes, incomplete information, and costly movements—that future researchers can include in landscape development to gain the maximum insights from swarm-based firm search simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algorithms
Algorithms Mathematics-Numerical Analysis
CiteScore
4.10
自引率
4.30%
发文量
394
审稿时长
11 weeks
期刊最新文献
Specification Mining Based on the Ordering Points to Identify the Clustering Structure Clustering Algorithm and Model Checking Personalized Advertising in E-Commerce: Using Clickstream Data to Target High-Value Customers Navigating the Maps: Euclidean vs. Road Network Distances in Spatial Queries Hybrid Sparrow Search-Exponential Distribution Optimization with Differential Evolution for Parameter Prediction of Solar Photovoltaic Models Particle Swarm Optimization-Based Unconstrained Polygonal Fitting of 2D Shapes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1