硅胶支撑的赤铁矿、磁铁矿和磁铁矿的合成与表征

IF 2.6 4区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Magnetochemistry Pub Date : 2023-11-15 DOI:10.3390/magnetochemistry9110228
P. A. Chernavskiy, A. Novakova, G. V. Pankina, D. A. Pankratov, S. I. Panfilov, G. A. Petrovskaya
{"title":"硅胶支撑的赤铁矿、磁铁矿和磁铁矿的合成与表征","authors":"P. A. Chernavskiy, A. Novakova, G. V. Pankina, D. A. Pankratov, S. I. Panfilov, G. A. Petrovskaya","doi":"10.3390/magnetochemistry9110228","DOIUrl":null,"url":null,"abstract":"A new method for obtaining nanosized particles of iron oxides using porous silica gel is proposed. In situ magnetometry was used to study the reduction of hematite deposited on silica gel during the thermolysis of glucose. The formed magnetite and maghemite obtained by subsequent oxidation of the magnetite were studied using X-ray diffraction and Mossbauer spectroscopy. It was shown that both the size of the oxide particles and the phase composition significantly depended on the porous structure of the silica gel. In particular, the formation of superparamagnetic maghemite particles on silica gels with pore sizes of 30, 15 and 10 nm was demonstrated.","PeriodicalId":18194,"journal":{"name":"Magnetochemistry","volume":"25 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and Characterization of Hematite, Magnetite and Maghemite Supported on Silica Gel\",\"authors\":\"P. A. Chernavskiy, A. Novakova, G. V. Pankina, D. A. Pankratov, S. I. Panfilov, G. A. Petrovskaya\",\"doi\":\"10.3390/magnetochemistry9110228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new method for obtaining nanosized particles of iron oxides using porous silica gel is proposed. In situ magnetometry was used to study the reduction of hematite deposited on silica gel during the thermolysis of glucose. The formed magnetite and maghemite obtained by subsequent oxidation of the magnetite were studied using X-ray diffraction and Mossbauer spectroscopy. It was shown that both the size of the oxide particles and the phase composition significantly depended on the porous structure of the silica gel. In particular, the formation of superparamagnetic maghemite particles on silica gels with pore sizes of 30, 15 and 10 nm was demonstrated.\",\"PeriodicalId\":18194,\"journal\":{\"name\":\"Magnetochemistry\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetochemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/magnetochemistry9110228\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetochemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/magnetochemistry9110228","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种利用多孔硅胶获得纳米级铁氧化物颗粒的新方法。利用原位磁强计研究了葡萄糖热解过程中沉积在硅胶上的赤铁矿的还原过程。使用 X 射线衍射和莫斯鲍尔光谱法研究了形成的磁铁矿和随后氧化磁铁矿得到的镁铁矿。结果表明,氧化物颗粒的大小和相组成在很大程度上取决于硅胶的多孔结构。特别是在孔径为 30、15 和 10 纳米的二氧化硅凝胶上形成了超顺磁性的磁铁矿颗粒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synthesis and Characterization of Hematite, Magnetite and Maghemite Supported on Silica Gel
A new method for obtaining nanosized particles of iron oxides using porous silica gel is proposed. In situ magnetometry was used to study the reduction of hematite deposited on silica gel during the thermolysis of glucose. The formed magnetite and maghemite obtained by subsequent oxidation of the magnetite were studied using X-ray diffraction and Mossbauer spectroscopy. It was shown that both the size of the oxide particles and the phase composition significantly depended on the porous structure of the silica gel. In particular, the formation of superparamagnetic maghemite particles on silica gels with pore sizes of 30, 15 and 10 nm was demonstrated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Magnetochemistry
Magnetochemistry Chemistry-Chemistry (miscellaneous)
CiteScore
3.90
自引率
11.10%
发文量
145
审稿时长
11 weeks
期刊介绍: Magnetochemistry (ISSN 2312-7481) is a unique international, scientific open access journal on molecular magnetism, the relationship between chemical structure and magnetism and magnetic materials. Magnetochemistry publishes research articles, short communications and reviews. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
Preparation and Optimization of the Adsorbent for Phosphorus Removal Using the Response Surface Method The Effect of Magnetically Induced Local Structure and Volume Fraction on the Electromagnetic Properties of Elastomer Samples with Ferrofluid Droplet Inserts Correction: Li et al. Dry Friction Performances of MoNx Coatings Deposited by High–Power Pulsed Magnetron Sputtering. Magnetochemistry 2023, 9, 60 The Influence of Viscosity on Heat Dissipation under Conditions of the High-Frequency Oscillating Magnetic Field Functional Molecular Materials Insights
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1