Xin Ji, Xin Chen, Kexin Li, Zhihao Zhang, Lijun Tang, Tiannv Li, Feng Han, Hao Hong* and Tao Zhang*,
{"title":"分子之眼基于分子探针技术的重大临床疾病精准诊断和治疗系统","authors":"Xin Ji, Xin Chen, Kexin Li, Zhihao Zhang, Lijun Tang, Tiannv Li, Feng Han, Hao Hong* and Tao Zhang*, ","doi":"10.1021/cbmi.3c00093","DOIUrl":null,"url":null,"abstract":"<p >With the flourishing development of precision medicine, theranostics, generally recognized as the integration of diagnosis and treatment, has emerged as a prominent trend in clinical research. However, theranostics primarily emphasizes the end result of integration, without providing sufficient details on how precise diagnosis and synergetic individualized treatment could be achieved and what clinical challenges could be effectively addressed in clinical practice. Molecular probe technology provides a robust method to bridge the gap between theory and practice. Through meticulous design of the chemical structure, imaging labels or drugs were conjugated to tumor-targeting peptides, antibodies, or inducers to form molecular probes, which allow a seamless switch between targeted intervention and targeted imaging with consistency in time, space, and biodistribution. Thus, this review proposes a concept called “molecular eye”, which refers to a comprehensive system for precise diagnosis and treatment of major clinical diseases based on molecular probe technology. This medical system emphasizes the chemical basis of probe development and optimization, which can provide precise actionable information for clinical decision making, allow molecular-targeted therapy, expand the indications of old therapy, and accelerate the regulatory approval of molecular drugs. “Molecular eye” resembles the piercing eye of the Monkey King, which can detect previously “invisible” diseases and facilitate disease diagnosis, treatment, real-time evaluation, and pathology research, guiding drug development. The emergence of the “molecular eyes” will provide opportunities and challenges in the fields of clinical practice and medical research and propel the progression of contemporary medicine toward precision medicine.</p>","PeriodicalId":53181,"journal":{"name":"Chemical & Biomedical Imaging","volume":"2 3","pages":"168–184"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/cbmi.3c00093","citationCount":"0","resultStr":"{\"title\":\"Molecular Eye: A System for Precise Diagnosis and Treatment of Major Clinical Diseases Based on Molecular Probe Technology\",\"authors\":\"Xin Ji, Xin Chen, Kexin Li, Zhihao Zhang, Lijun Tang, Tiannv Li, Feng Han, Hao Hong* and Tao Zhang*, \",\"doi\":\"10.1021/cbmi.3c00093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >With the flourishing development of precision medicine, theranostics, generally recognized as the integration of diagnosis and treatment, has emerged as a prominent trend in clinical research. However, theranostics primarily emphasizes the end result of integration, without providing sufficient details on how precise diagnosis and synergetic individualized treatment could be achieved and what clinical challenges could be effectively addressed in clinical practice. Molecular probe technology provides a robust method to bridge the gap between theory and practice. Through meticulous design of the chemical structure, imaging labels or drugs were conjugated to tumor-targeting peptides, antibodies, or inducers to form molecular probes, which allow a seamless switch between targeted intervention and targeted imaging with consistency in time, space, and biodistribution. Thus, this review proposes a concept called “molecular eye”, which refers to a comprehensive system for precise diagnosis and treatment of major clinical diseases based on molecular probe technology. This medical system emphasizes the chemical basis of probe development and optimization, which can provide precise actionable information for clinical decision making, allow molecular-targeted therapy, expand the indications of old therapy, and accelerate the regulatory approval of molecular drugs. “Molecular eye” resembles the piercing eye of the Monkey King, which can detect previously “invisible” diseases and facilitate disease diagnosis, treatment, real-time evaluation, and pathology research, guiding drug development. The emergence of the “molecular eyes” will provide opportunities and challenges in the fields of clinical practice and medical research and propel the progression of contemporary medicine toward precision medicine.</p>\",\"PeriodicalId\":53181,\"journal\":{\"name\":\"Chemical & Biomedical Imaging\",\"volume\":\"2 3\",\"pages\":\"168–184\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/cbmi.3c00093\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical & Biomedical Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/cbmi.3c00093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical & Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/cbmi.3c00093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Molecular Eye: A System for Precise Diagnosis and Treatment of Major Clinical Diseases Based on Molecular Probe Technology
With the flourishing development of precision medicine, theranostics, generally recognized as the integration of diagnosis and treatment, has emerged as a prominent trend in clinical research. However, theranostics primarily emphasizes the end result of integration, without providing sufficient details on how precise diagnosis and synergetic individualized treatment could be achieved and what clinical challenges could be effectively addressed in clinical practice. Molecular probe technology provides a robust method to bridge the gap between theory and practice. Through meticulous design of the chemical structure, imaging labels or drugs were conjugated to tumor-targeting peptides, antibodies, or inducers to form molecular probes, which allow a seamless switch between targeted intervention and targeted imaging with consistency in time, space, and biodistribution. Thus, this review proposes a concept called “molecular eye”, which refers to a comprehensive system for precise diagnosis and treatment of major clinical diseases based on molecular probe technology. This medical system emphasizes the chemical basis of probe development and optimization, which can provide precise actionable information for clinical decision making, allow molecular-targeted therapy, expand the indications of old therapy, and accelerate the regulatory approval of molecular drugs. “Molecular eye” resembles the piercing eye of the Monkey King, which can detect previously “invisible” diseases and facilitate disease diagnosis, treatment, real-time evaluation, and pathology research, guiding drug development. The emergence of the “molecular eyes” will provide opportunities and challenges in the fields of clinical practice and medical research and propel the progression of contemporary medicine toward precision medicine.
期刊介绍:
Chemical & Biomedical Imaging is a peer-reviewed open access journal devoted to the publication of cutting-edge research papers on all aspects of chemical and biomedical imaging. This interdisciplinary field sits at the intersection of chemistry physics biology materials engineering and medicine. The journal aims to bring together researchers from across these disciplines to address cutting-edge challenges of fundamental research and applications.Topics of particular interest include but are not limited to:Imaging of processes and reactionsImaging of nanoscale microscale and mesoscale materialsImaging of biological interactions and interfacesSingle-molecule and cellular imagingWhole-organ and whole-body imagingMolecular imaging probes and contrast agentsBioluminescence chemiluminescence and electrochemiluminescence imagingNanophotonics and imagingChemical tools for new imaging modalitiesChemical and imaging techniques in diagnosis and therapyImaging-guided drug deliveryAI and machine learning assisted imaging