高速列车车轮存在切面缺陷时过早疲劳的数值研究与案例分析

Naima Jouilel, Nissrine Mhaiti, M. Radouani, Benaissa El Fahime
{"title":"高速列车车轮存在切面缺陷时过早疲劳的数值研究与案例分析","authors":"Naima Jouilel, Nissrine Mhaiti, M. Radouani, Benaissa El Fahime","doi":"10.5937/jaes0-43734","DOIUrl":null,"url":null,"abstract":"In this paper, the premature failure of the high speed railway wheel of power locomotive commissioned in Morocco since 2018 was investigated. A three dimensional model of the wheel is established, with account of specific wheel’s features, to perform the finite elements and modal analysis. Simulations were conducted for several functional diameters of wheels (850mm, 885mm, and 920mm) to figure out stress distribution in different operation conditions. Stress results show that the wheel bears the mechanical loading in both exceptional and fatigue loads, therefore a modal analysis of the structure in presence of facets, which create a vibratory state, is done to examine their effect on the premature fatigue of the wheel. Modal analysis reveals that the presence of facets leads to a vibratory mode near to resonance. Based on those results, critical operation points as function of facets number and wheel diameter were determined to avoid scenarios that lead to cracks and premature fatigue of the studied wheels. Existing maintenance procedures must be modified to overcome this problem and increase the wheel’s lifetime without affecting the operation safety of the high-speed train.","PeriodicalId":35468,"journal":{"name":"Journal of Applied Engineering Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NUMERICAL INVESTIGATION OF PREMATURE FATIGUE OF HIGH-SPEED TRAIN WHEELS IN PRESENCE OF FACETS DEFECT WITH CASE STUDY\",\"authors\":\"Naima Jouilel, Nissrine Mhaiti, M. Radouani, Benaissa El Fahime\",\"doi\":\"10.5937/jaes0-43734\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the premature failure of the high speed railway wheel of power locomotive commissioned in Morocco since 2018 was investigated. A three dimensional model of the wheel is established, with account of specific wheel’s features, to perform the finite elements and modal analysis. Simulations were conducted for several functional diameters of wheels (850mm, 885mm, and 920mm) to figure out stress distribution in different operation conditions. Stress results show that the wheel bears the mechanical loading in both exceptional and fatigue loads, therefore a modal analysis of the structure in presence of facets, which create a vibratory state, is done to examine their effect on the premature fatigue of the wheel. Modal analysis reveals that the presence of facets leads to a vibratory mode near to resonance. Based on those results, critical operation points as function of facets number and wheel diameter were determined to avoid scenarios that lead to cracks and premature fatigue of the studied wheels. Existing maintenance procedures must be modified to overcome this problem and increase the wheel’s lifetime without affecting the operation safety of the high-speed train.\",\"PeriodicalId\":35468,\"journal\":{\"name\":\"Journal of Applied Engineering Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Engineering Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5937/jaes0-43734\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Engineering Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5937/jaes0-43734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了自 2018 年起在摩洛哥投入使用的高速铁路电力机车车轮的过早失效问题。考虑到车轮的具体特征,建立了车轮的三维模型,以进行有限元和模态分析。对车轮的几种功能直径(850 毫米、885 毫米和 920 毫米)进行了模拟,以了解不同运行条件下的应力分布。应力结果表明,车轮在特殊和疲劳载荷下都能承受机械载荷,因此我们对产生振动状态的切面结构进行了模态分析,以研究它们对车轮过早疲劳的影响。模态分析表明,切面的存在会导致接近共振的振动模式。根据这些结果,确定了与切面数量和车轮直径相关的临界操作点,以避免出现导致所研究车轮出现裂纹和过早疲劳的情况。必须修改现有的维护程序以克服这一问题,并在不影响高速列车运行安全的情况下延长车轮的使用寿命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NUMERICAL INVESTIGATION OF PREMATURE FATIGUE OF HIGH-SPEED TRAIN WHEELS IN PRESENCE OF FACETS DEFECT WITH CASE STUDY
In this paper, the premature failure of the high speed railway wheel of power locomotive commissioned in Morocco since 2018 was investigated. A three dimensional model of the wheel is established, with account of specific wheel’s features, to perform the finite elements and modal analysis. Simulations were conducted for several functional diameters of wheels (850mm, 885mm, and 920mm) to figure out stress distribution in different operation conditions. Stress results show that the wheel bears the mechanical loading in both exceptional and fatigue loads, therefore a modal analysis of the structure in presence of facets, which create a vibratory state, is done to examine their effect on the premature fatigue of the wheel. Modal analysis reveals that the presence of facets leads to a vibratory mode near to resonance. Based on those results, critical operation points as function of facets number and wheel diameter were determined to avoid scenarios that lead to cracks and premature fatigue of the studied wheels. Existing maintenance procedures must be modified to overcome this problem and increase the wheel’s lifetime without affecting the operation safety of the high-speed train.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Engineering Science
Journal of Applied Engineering Science Engineering-Engineering (all)
CiteScore
2.00
自引率
0.00%
发文量
122
审稿时长
12 weeks
期刊介绍: Since 2002 iipp build cooperation with its clients established on wealthy experience, interchangeable respect and trust and permanently arrangement with the purpose of successfully realization of projects recognizable according to good organization and high quality of provided favors. Working as unique team of highly motivated experts, Institute iipp provides to its customers the most high-quality solutions in domain of engineering consulting.
期刊最新文献
SIMULATION MODELING OF LOGGING HARVESTER MOVEMENTS DURING SELECTIVE LOGGING RISK MITIGATION AS A MEDIATING FACTOR IN THE RELATIONSHIP BETWEEN TOP MANAGEMENT SUPPORT AND CONSTRUCTION PROJECT PERFORMANCE 3D DOCUMENTATION OF CULTURAL HERITAGE USING TERRESTRIAL LASER SCANNING ROAD TRAFFIC ACCIDENTS FACTOR ON RURAL ARTERIAL ROADS RESTORATION OF LARGE MODULAR TEETH OF BALL MILL GEARS BY ELECTRO-SLAG SURFACE
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1