静态和低速条件下大型静压轴承分段式滑块的装配误差容限估算

IF 2.1 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Machines Pub Date : 2023-11-15 DOI:10.3390/machines11111025
M. Michalec, Jan Foltýn, Tomáš Dryml, Lukáš Snopek, Dominik Javorský, Martin Čupr, Petr Svoboda
{"title":"静态和低速条件下大型静压轴承分段式滑块的装配误差容限估算","authors":"M. Michalec, Jan Foltýn, Tomáš Dryml, Lukáš Snopek, Dominik Javorský, Martin Čupr, Petr Svoboda","doi":"10.3390/machines11111025","DOIUrl":null,"url":null,"abstract":"Hydrostatic bearings come with certain advantages over rolling bearings in moving large-scale structures. However, assembly errors are a serious matter on large scales. This study focuses on finding assembly error tolerances for the most common types in segmented errors of hydrostatic bearing sliders: tilt and offset. The experimental part was performed in the laboratory on a full diagnostic hydrostatic bearing testing rig. An investigation of the type of error on bearing performance was first conducted under static conditions. We identified the limiting error-to-film thickness ratio (e/h) for static offset error as 2.5 and the tilt angle as θ = 0.46° for the investigated case. Subsequently, two types of offset error were investigated under slow-speed conditions at 38 mm/s. The limiting error for the offset error considering the relative bi-directional movement of the slider and the pad was determined as e/h < 1. The results further indicate that the error tolerance would further decrease with increasing speed. The experimental results of error tolerances can be used to determine the required film thickness or vice versa.","PeriodicalId":48519,"journal":{"name":"Machines","volume":"2 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assembly Error Tolerance Estimation for Large-Scale Hydrostatic Bearing Segmented Sliders under Static and Low-Speed Conditions\",\"authors\":\"M. Michalec, Jan Foltýn, Tomáš Dryml, Lukáš Snopek, Dominik Javorský, Martin Čupr, Petr Svoboda\",\"doi\":\"10.3390/machines11111025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hydrostatic bearings come with certain advantages over rolling bearings in moving large-scale structures. However, assembly errors are a serious matter on large scales. This study focuses on finding assembly error tolerances for the most common types in segmented errors of hydrostatic bearing sliders: tilt and offset. The experimental part was performed in the laboratory on a full diagnostic hydrostatic bearing testing rig. An investigation of the type of error on bearing performance was first conducted under static conditions. We identified the limiting error-to-film thickness ratio (e/h) for static offset error as 2.5 and the tilt angle as θ = 0.46° for the investigated case. Subsequently, two types of offset error were investigated under slow-speed conditions at 38 mm/s. The limiting error for the offset error considering the relative bi-directional movement of the slider and the pad was determined as e/h < 1. The results further indicate that the error tolerance would further decrease with increasing speed. The experimental results of error tolerances can be used to determine the required film thickness or vice versa.\",\"PeriodicalId\":48519,\"journal\":{\"name\":\"Machines\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machines\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/machines11111025\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/machines11111025","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在移动大型结构时,静压轴承比滚动轴承具有一定的优势。然而,装配误差在大型结构中是一个严重问题。本研究的重点是找出静压轴承滑块最常见的分段误差类型:倾斜和偏移的装配误差公差。实验部分是在实验室的全诊断静压轴承测试台上进行的。首先在静态条件下调查了误差类型对轴承性能的影响。我们确定静态偏移误差的极限误差与膜厚比率 (e/h) 为 2.5,倾斜角度为 θ = 0.46°。随后,在 38 mm/s 的慢速条件下对两种偏移误差进行了研究。考虑到滑块和垫块的相对双向运动,确定偏移误差的极限误差为 e/h < 1。结果进一步表明,误差公差会随着速度的增加而进一步减小。误差公差的实验结果可用于确定所需的薄膜厚度,反之亦然。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Assembly Error Tolerance Estimation for Large-Scale Hydrostatic Bearing Segmented Sliders under Static and Low-Speed Conditions
Hydrostatic bearings come with certain advantages over rolling bearings in moving large-scale structures. However, assembly errors are a serious matter on large scales. This study focuses on finding assembly error tolerances for the most common types in segmented errors of hydrostatic bearing sliders: tilt and offset. The experimental part was performed in the laboratory on a full diagnostic hydrostatic bearing testing rig. An investigation of the type of error on bearing performance was first conducted under static conditions. We identified the limiting error-to-film thickness ratio (e/h) for static offset error as 2.5 and the tilt angle as θ = 0.46° for the investigated case. Subsequently, two types of offset error were investigated under slow-speed conditions at 38 mm/s. The limiting error for the offset error considering the relative bi-directional movement of the slider and the pad was determined as e/h < 1. The results further indicate that the error tolerance would further decrease with increasing speed. The experimental results of error tolerances can be used to determine the required film thickness or vice versa.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Machines
Machines Multiple-
CiteScore
3.00
自引率
26.90%
发文量
1012
审稿时长
11 weeks
期刊介绍: Machines (ISSN 2075-1702) is an international, peer-reviewed journal on machinery and engineering. It publishes research articles, reviews, short communications and letters. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided. There are, in addition, unique features of this journal: *manuscripts regarding research proposals and research ideas will be particularly welcomed *electronic files or software regarding the full details of the calculation and experimental procedure - if unable to be published in a normal way - can be deposited as supplementary material Subject Areas: applications of automation, systems and control engineering, electronic engineering, mechanical engineering, computer engineering, mechatronics, robotics, industrial design, human-machine-interfaces, mechanical systems, machines and related components, machine vision, history of technology and industrial revolution, turbo machinery, machine diagnostics and prognostics (condition monitoring), machine design.
期刊最新文献
Investigative Study of the Effect of Damping and Stiffness Nonlinearities on an Electromagnetic Energy Harvester at Low-Frequency Excitations Vibration Research on Centrifugal Loop Dryer Machines Used in Plastic Recycling Processes Novel Design of Variable Stiffness Pneumatic Flexible Shaft Coupling: Determining the Mathematical-Physical Model and Potential Benefits Considerations on the Dynamics of Biofidelic Sensors in the Assessment of Human–Robot Impacts Structural Design with Self-Weight and Inertial Loading Using Simulated Annealing for Non-Gradient Topology Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1