{"title":"近红外木质素模型转移:基于 SWCSS-CARS 耦合算法的研究","authors":"Zhijian Liu, Honghong Wang, Zhi-xin Xiong, Yunchao Hu, Haoran Huang, Ying Wang, Xianzhi Wu, Long Liang","doi":"10.15376/biores.19.1.245-256","DOIUrl":null,"url":null,"abstract":"In NIR spectral modeling, the method of screening wavelengths with consistent stable signals (SWCSS) is based on a standard-free algorithm. However, the wavelengths selected by SWCSS may contain invalid information. In this paper, the Competitive Adaptive Reweighted Sampling (CARS) wavelength optimization algorithm was used in conjunction with SWCSS to eliminate the uninformative variables in the wavelengths selected by SWCSS. The SWCSS-CARS method was based on three near-infrared spectrometers (Lengguang 1, Lengguang 2, and Lengguang 3), with Lengguang 1 as the master and the other two instruments as the targets, using a total of 84 sample spectra of five types of pulpwood and their lignin contents as the research objects. Compared with the full spectrum, the number of wavelengths was reduced from 1601 to 24 in the model built using the coupling algorithm. For target 1, the value of RPD was improved from 1.9247 to 3.1880; for target 2, t the value of RPD was improved from 1.7415 to 3.2508. The wavelengths selected by the SWCSS-CARS coupling algorithm were able to build stable, robust models.","PeriodicalId":9172,"journal":{"name":"Bioresources","volume":"2 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Near-infrared lignin model transfer: A study based on SWCSS-CARS coupling algorithm\",\"authors\":\"Zhijian Liu, Honghong Wang, Zhi-xin Xiong, Yunchao Hu, Haoran Huang, Ying Wang, Xianzhi Wu, Long Liang\",\"doi\":\"10.15376/biores.19.1.245-256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In NIR spectral modeling, the method of screening wavelengths with consistent stable signals (SWCSS) is based on a standard-free algorithm. However, the wavelengths selected by SWCSS may contain invalid information. In this paper, the Competitive Adaptive Reweighted Sampling (CARS) wavelength optimization algorithm was used in conjunction with SWCSS to eliminate the uninformative variables in the wavelengths selected by SWCSS. The SWCSS-CARS method was based on three near-infrared spectrometers (Lengguang 1, Lengguang 2, and Lengguang 3), with Lengguang 1 as the master and the other two instruments as the targets, using a total of 84 sample spectra of five types of pulpwood and their lignin contents as the research objects. Compared with the full spectrum, the number of wavelengths was reduced from 1601 to 24 in the model built using the coupling algorithm. For target 1, the value of RPD was improved from 1.9247 to 3.1880; for target 2, t the value of RPD was improved from 1.7415 to 3.2508. The wavelengths selected by the SWCSS-CARS coupling algorithm were able to build stable, robust models.\",\"PeriodicalId\":9172,\"journal\":{\"name\":\"Bioresources\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioresources\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.15376/biores.19.1.245-256\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, PAPER & WOOD\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresources","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.15376/biores.19.1.245-256","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
Near-infrared lignin model transfer: A study based on SWCSS-CARS coupling algorithm
In NIR spectral modeling, the method of screening wavelengths with consistent stable signals (SWCSS) is based on a standard-free algorithm. However, the wavelengths selected by SWCSS may contain invalid information. In this paper, the Competitive Adaptive Reweighted Sampling (CARS) wavelength optimization algorithm was used in conjunction with SWCSS to eliminate the uninformative variables in the wavelengths selected by SWCSS. The SWCSS-CARS method was based on three near-infrared spectrometers (Lengguang 1, Lengguang 2, and Lengguang 3), with Lengguang 1 as the master and the other two instruments as the targets, using a total of 84 sample spectra of five types of pulpwood and their lignin contents as the research objects. Compared with the full spectrum, the number of wavelengths was reduced from 1601 to 24 in the model built using the coupling algorithm. For target 1, the value of RPD was improved from 1.9247 to 3.1880; for target 2, t the value of RPD was improved from 1.7415 to 3.2508. The wavelengths selected by the SWCSS-CARS coupling algorithm were able to build stable, robust models.
期刊介绍:
The purpose of BioResources is to promote scientific discourse and to foster scientific developments related to sustainable manufacture involving lignocellulosic or woody biomass resources, including wood and agricultural residues. BioResources will focus on advances in science and technology. Emphasis will be placed on bioproducts, bioenergy, papermaking technology, wood products, new manufacturing materials, composite structures, and chemicals derived from lignocellulosic biomass.