Yan Mao, Li Huang, Zhiqiang Hao, Hongge Tao, Chunyao Qing, Shengyong Liu, Guangtao Wang, Qingyan Ma
{"title":"用于甲烷吸附和脱碳的改性果壳碳实验研究","authors":"Yan Mao, Li Huang, Zhiqiang Hao, Hongge Tao, Chunyao Qing, Shengyong Liu, Guangtao Wang, Qingyan Ma","doi":"10.15376/biores.19.1.195-209","DOIUrl":null,"url":null,"abstract":"Modification of activated carbon has the potential to improve its adsorption and separation capacity. Different concentrations of ammonia (6%, 9%, 12%, 15%) and treatment times (4 h, 6 h, 8 h, 10 h) were used to modify jujube shell carbon and coconut shell carbon in ultrasonic washing equipment. Biogas adsorption experiments were carried out with modified activated carbon to study the effect of adsorption and decarbonization on activated carbon surface functional groups. After modification, the surface alkaline functional groups of activated carbon increased, the acidic functional groups decreased, and the adsorption performance of CO2 was enhanced. In addition, the specific surface area and total pore volume of activated carbon decreased, the average pore size increased, and the degree of graphitization increased. In the experimental research range, under ultrasonic conditions, jujube shell carbon impregnated with 12% ammonia water for 4 h and coconut shell carbon impregnated with 9% ammonia water for 10 h had the best modification effect. The adsorption capacity for CO2 was 1.83 and 1.745 mmol/g, respectively, which increased by 0.8 mmol/g and 0.599 mmol/g, respectively, compared with the unmodified sample.","PeriodicalId":9172,"journal":{"name":"Bioresources","volume":"30 5","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental study on modified fruit shell carbon for methane adsorption and decarbonization\",\"authors\":\"Yan Mao, Li Huang, Zhiqiang Hao, Hongge Tao, Chunyao Qing, Shengyong Liu, Guangtao Wang, Qingyan Ma\",\"doi\":\"10.15376/biores.19.1.195-209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modification of activated carbon has the potential to improve its adsorption and separation capacity. Different concentrations of ammonia (6%, 9%, 12%, 15%) and treatment times (4 h, 6 h, 8 h, 10 h) were used to modify jujube shell carbon and coconut shell carbon in ultrasonic washing equipment. Biogas adsorption experiments were carried out with modified activated carbon to study the effect of adsorption and decarbonization on activated carbon surface functional groups. After modification, the surface alkaline functional groups of activated carbon increased, the acidic functional groups decreased, and the adsorption performance of CO2 was enhanced. In addition, the specific surface area and total pore volume of activated carbon decreased, the average pore size increased, and the degree of graphitization increased. In the experimental research range, under ultrasonic conditions, jujube shell carbon impregnated with 12% ammonia water for 4 h and coconut shell carbon impregnated with 9% ammonia water for 10 h had the best modification effect. The adsorption capacity for CO2 was 1.83 and 1.745 mmol/g, respectively, which increased by 0.8 mmol/g and 0.599 mmol/g, respectively, compared with the unmodified sample.\",\"PeriodicalId\":9172,\"journal\":{\"name\":\"Bioresources\",\"volume\":\"30 5\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioresources\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.15376/biores.19.1.195-209\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, PAPER & WOOD\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresources","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.15376/biores.19.1.195-209","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
Experimental study on modified fruit shell carbon for methane adsorption and decarbonization
Modification of activated carbon has the potential to improve its adsorption and separation capacity. Different concentrations of ammonia (6%, 9%, 12%, 15%) and treatment times (4 h, 6 h, 8 h, 10 h) were used to modify jujube shell carbon and coconut shell carbon in ultrasonic washing equipment. Biogas adsorption experiments were carried out with modified activated carbon to study the effect of adsorption and decarbonization on activated carbon surface functional groups. After modification, the surface alkaline functional groups of activated carbon increased, the acidic functional groups decreased, and the adsorption performance of CO2 was enhanced. In addition, the specific surface area and total pore volume of activated carbon decreased, the average pore size increased, and the degree of graphitization increased. In the experimental research range, under ultrasonic conditions, jujube shell carbon impregnated with 12% ammonia water for 4 h and coconut shell carbon impregnated with 9% ammonia water for 10 h had the best modification effect. The adsorption capacity for CO2 was 1.83 and 1.745 mmol/g, respectively, which increased by 0.8 mmol/g and 0.599 mmol/g, respectively, compared with the unmodified sample.
期刊介绍:
The purpose of BioResources is to promote scientific discourse and to foster scientific developments related to sustainable manufacture involving lignocellulosic or woody biomass resources, including wood and agricultural residues. BioResources will focus on advances in science and technology. Emphasis will be placed on bioproducts, bioenergy, papermaking technology, wood products, new manufacturing materials, composite structures, and chemicals derived from lignocellulosic biomass.