{"title":"水环境中有毒金属离子没收过程中的表面功能化环保植物种子","authors":"G. Preethi, Andal N. Muthulakshmi","doi":"10.25303/2712rjce035043","DOIUrl":null,"url":null,"abstract":"Emancipation of heavy metals into water streams and landfills led to groundwater pollution and created a sustained havoc to our environment and implication of serious global threat. Surplus accumulation of heavy metal pollutants into the environment is contributed majorly by industrial sources. This contamination by metal ions in aqueous / effluent samples has altered the geochemistry of water / soil, adversely affecting the habitats/ fauna and flora. Therefore, development of cost- effective technologies employing attractive biomaterials to reduce the load of hazardous metals is investigated in this study. Exceeding concentrations of cadmium and iron in water bodies wrap up the choice of interest, to minimize their occurrence from industrial discharges. Thespesia populnea Seeds (TPS), as unique biomaterial, has been identified / modified chemically / activated, employed to analyse its sorption behavior in the process of trapping cadmium and iron ions and characterized using microscopic / FTIR / SEM / EDAX techniques. The role of operating factors viz. impact of agitation time, adsorbent dose, initial metal ion concentrations, temperature and solution pH in arriving the sorption equilibrium has been optimized under specified conditions. The results reveal the significant contribution of the employed material in sequestering Cd2+ and Fe3+metal ions from aqueous ambience.","PeriodicalId":21012,"journal":{"name":"Research Journal of Chemistry and Environment","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface Functionalized Eco-friendly Plant Seeds in the Confiscating Process of Toxic Metal ions from Aqueous Environment\",\"authors\":\"G. Preethi, Andal N. Muthulakshmi\",\"doi\":\"10.25303/2712rjce035043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Emancipation of heavy metals into water streams and landfills led to groundwater pollution and created a sustained havoc to our environment and implication of serious global threat. Surplus accumulation of heavy metal pollutants into the environment is contributed majorly by industrial sources. This contamination by metal ions in aqueous / effluent samples has altered the geochemistry of water / soil, adversely affecting the habitats/ fauna and flora. Therefore, development of cost- effective technologies employing attractive biomaterials to reduce the load of hazardous metals is investigated in this study. Exceeding concentrations of cadmium and iron in water bodies wrap up the choice of interest, to minimize their occurrence from industrial discharges. Thespesia populnea Seeds (TPS), as unique biomaterial, has been identified / modified chemically / activated, employed to analyse its sorption behavior in the process of trapping cadmium and iron ions and characterized using microscopic / FTIR / SEM / EDAX techniques. The role of operating factors viz. impact of agitation time, adsorbent dose, initial metal ion concentrations, temperature and solution pH in arriving the sorption equilibrium has been optimized under specified conditions. The results reveal the significant contribution of the employed material in sequestering Cd2+ and Fe3+metal ions from aqueous ambience.\",\"PeriodicalId\":21012,\"journal\":{\"name\":\"Research Journal of Chemistry and Environment\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research Journal of Chemistry and Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25303/2712rjce035043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Journal of Chemistry and Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25303/2712rjce035043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
Surface Functionalized Eco-friendly Plant Seeds in the Confiscating Process of Toxic Metal ions from Aqueous Environment
Emancipation of heavy metals into water streams and landfills led to groundwater pollution and created a sustained havoc to our environment and implication of serious global threat. Surplus accumulation of heavy metal pollutants into the environment is contributed majorly by industrial sources. This contamination by metal ions in aqueous / effluent samples has altered the geochemistry of water / soil, adversely affecting the habitats/ fauna and flora. Therefore, development of cost- effective technologies employing attractive biomaterials to reduce the load of hazardous metals is investigated in this study. Exceeding concentrations of cadmium and iron in water bodies wrap up the choice of interest, to minimize their occurrence from industrial discharges. Thespesia populnea Seeds (TPS), as unique biomaterial, has been identified / modified chemically / activated, employed to analyse its sorption behavior in the process of trapping cadmium and iron ions and characterized using microscopic / FTIR / SEM / EDAX techniques. The role of operating factors viz. impact of agitation time, adsorbent dose, initial metal ion concentrations, temperature and solution pH in arriving the sorption equilibrium has been optimized under specified conditions. The results reveal the significant contribution of the employed material in sequestering Cd2+ and Fe3+metal ions from aqueous ambience.