预测国际股市趋势:XGBoost、LSTM、LSTM-XGBoost 和 XGBoost 模型回测

Hassan Oukhouya, Hamza Kadiri, Khalid El Himdi, Raby Guerbaz
{"title":"预测国际股市趋势:XGBoost、LSTM、LSTM-XGBoost 和 XGBoost 模型回测","authors":"Hassan Oukhouya, Hamza Kadiri, Khalid El Himdi, Raby Guerbaz","doi":"10.19139/soic-2310-5070-1822","DOIUrl":null,"url":null,"abstract":"Forecasting time series is crucial for financial research and decision-making in business. The nonlinearity of stock market prices profoundly impacts global economic and financial sectors. This study focuses on modeling and forecasting the daily prices of key stock indices - MASI, CAC 40, DAX, FTSE 250, NASDAQ, and HKEX, representing the Moroccan, French, German, British, US, and Hong Kong markets, respectively. We compare the performance of machine learning models, including Long Short-Term Memory (LSTM), eXtreme Gradient Boosting (XGBoost), and the hybrid LSTM-XGBoost, and utilize the skforecast library for backtesting. Results show that the hybrid LSTM-XGBoost model, optimized using Grid Search (GS), outperforms other models, achieving high accuracy in forecasting daily prices. This contribution offers financial analysts and investors valuable insights, facilitating informed decision-making through precise forecasts of international stock prices.","PeriodicalId":131002,"journal":{"name":"Statistics, Optimization & Information Computing","volume":"58 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Forecasting International Stock Market Trends: XGBoost, LSTM, LSTM-XGBoost, and Backtesting XGBoost Models\",\"authors\":\"Hassan Oukhouya, Hamza Kadiri, Khalid El Himdi, Raby Guerbaz\",\"doi\":\"10.19139/soic-2310-5070-1822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Forecasting time series is crucial for financial research and decision-making in business. The nonlinearity of stock market prices profoundly impacts global economic and financial sectors. This study focuses on modeling and forecasting the daily prices of key stock indices - MASI, CAC 40, DAX, FTSE 250, NASDAQ, and HKEX, representing the Moroccan, French, German, British, US, and Hong Kong markets, respectively. We compare the performance of machine learning models, including Long Short-Term Memory (LSTM), eXtreme Gradient Boosting (XGBoost), and the hybrid LSTM-XGBoost, and utilize the skforecast library for backtesting. Results show that the hybrid LSTM-XGBoost model, optimized using Grid Search (GS), outperforms other models, achieving high accuracy in forecasting daily prices. This contribution offers financial analysts and investors valuable insights, facilitating informed decision-making through precise forecasts of international stock prices.\",\"PeriodicalId\":131002,\"journal\":{\"name\":\"Statistics, Optimization & Information Computing\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics, Optimization & Information Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19139/soic-2310-5070-1822\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics, Optimization & Information Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19139/soic-2310-5070-1822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

预测时间序列对金融研究和商业决策至关重要。股票市场价格的非线性深刻影响着全球经济和金融行业。本研究侧重于对主要股票指数(MASI、CAC 40、DAX、FTSE 250、NASDAQ 和 HKEX,分别代表摩洛哥、法国、德国、英国、美国和香港市场)的每日价格进行建模和预测。我们比较了机器学习模型的性能,包括长短期记忆(LSTM)、极梯度提升(XGBoost)和混合 LSTM-XGBoost 模型,并利用 skforecast 库进行了回溯测试。结果表明,使用网格搜索(GS)优化的混合 LSTM-XGBoost 模型优于其他模型,在预测每日价格方面达到了很高的准确度。这一贡献为金融分析师和投资者提供了宝贵的见解,通过对国际股票价格的精确预测促进了知情决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Forecasting International Stock Market Trends: XGBoost, LSTM, LSTM-XGBoost, and Backtesting XGBoost Models
Forecasting time series is crucial for financial research and decision-making in business. The nonlinearity of stock market prices profoundly impacts global economic and financial sectors. This study focuses on modeling and forecasting the daily prices of key stock indices - MASI, CAC 40, DAX, FTSE 250, NASDAQ, and HKEX, representing the Moroccan, French, German, British, US, and Hong Kong markets, respectively. We compare the performance of machine learning models, including Long Short-Term Memory (LSTM), eXtreme Gradient Boosting (XGBoost), and the hybrid LSTM-XGBoost, and utilize the skforecast library for backtesting. Results show that the hybrid LSTM-XGBoost model, optimized using Grid Search (GS), outperforms other models, achieving high accuracy in forecasting daily prices. This contribution offers financial analysts and investors valuable insights, facilitating informed decision-making through precise forecasts of international stock prices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
In-depth Analysis of von Mises Distribution Models: Understanding Theory, Applications, and Future Directions Bayesian and Non-Bayesian Estimation for The Parameter of Inverted Topp-Leone Distribution Based on Progressive Type I Censoring Comparative Evaluation of Imbalanced Data Management Techniques for Solving Classification Problems on Imbalanced Datasets An Algorithm for Solving Quadratic Programming Problems with an M-matrix An Effective Randomized Algorithm for Hyperspectral Image Feature Extraction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1