光场深度估计:从原理到未来的全面考察

IF 3.2 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS High-Confidence Computing Pub Date : 2023-11-22 DOI:10.1016/j.hcc.2023.100187
Tun Wang , Hao Sheng , Rongshan Chen , Da Yang , Zhenglong Cui , Sizhe Wang , Ruixuan Cong , Mingyuan Zhao
{"title":"光场深度估计:从原理到未来的全面考察","authors":"Tun Wang ,&nbsp;Hao Sheng ,&nbsp;Rongshan Chen ,&nbsp;Da Yang ,&nbsp;Zhenglong Cui ,&nbsp;Sizhe Wang ,&nbsp;Ruixuan Cong ,&nbsp;Mingyuan Zhao","doi":"10.1016/j.hcc.2023.100187","DOIUrl":null,"url":null,"abstract":"<div><p>Light Field (LF) depth estimation is an important research direction in the area of computer vision and computational photography, which aims to infer the depth information of different objects in three-dimensional scenes by capturing LF data. Given this new era of significance, this article introduces a survey of the key concepts, methods, novel applications, and future trends in this area. We summarize the LF depth estimation methods, which are usually based on the interaction of radiance from rays in all directions of the LF data, such as epipolar-plane, multi-view geometry, focal stack, and deep learning. We analyze the many challenges facing each of these approaches, including complex algorithms, large amounts of computation, and speed requirements. In addition, this survey summarizes most of the currently available methods, conducts some comparative experiments, discusses the results, and investigates the novel directions in LF depth estimation.</p></div>","PeriodicalId":100605,"journal":{"name":"High-Confidence Computing","volume":"4 1","pages":"Article 100187"},"PeriodicalIF":3.2000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667295223000855/pdfft?md5=995254b6e9fd71f7ac04f1e9668cefdf&pid=1-s2.0-S2667295223000855-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Light field depth estimation: A comprehensive survey from principles to future\",\"authors\":\"Tun Wang ,&nbsp;Hao Sheng ,&nbsp;Rongshan Chen ,&nbsp;Da Yang ,&nbsp;Zhenglong Cui ,&nbsp;Sizhe Wang ,&nbsp;Ruixuan Cong ,&nbsp;Mingyuan Zhao\",\"doi\":\"10.1016/j.hcc.2023.100187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Light Field (LF) depth estimation is an important research direction in the area of computer vision and computational photography, which aims to infer the depth information of different objects in three-dimensional scenes by capturing LF data. Given this new era of significance, this article introduces a survey of the key concepts, methods, novel applications, and future trends in this area. We summarize the LF depth estimation methods, which are usually based on the interaction of radiance from rays in all directions of the LF data, such as epipolar-plane, multi-view geometry, focal stack, and deep learning. We analyze the many challenges facing each of these approaches, including complex algorithms, large amounts of computation, and speed requirements. In addition, this survey summarizes most of the currently available methods, conducts some comparative experiments, discusses the results, and investigates the novel directions in LF depth estimation.</p></div>\",\"PeriodicalId\":100605,\"journal\":{\"name\":\"High-Confidence Computing\",\"volume\":\"4 1\",\"pages\":\"Article 100187\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667295223000855/pdfft?md5=995254b6e9fd71f7ac04f1e9668cefdf&pid=1-s2.0-S2667295223000855-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High-Confidence Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667295223000855\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High-Confidence Computing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667295223000855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

光场(LF)深度估计是计算机视觉和计算摄影领域的一个重要研究方向,旨在通过捕捉 LF 数据推断三维场景中不同物体的深度信息。鉴于这一新时代的重要意义,本文介绍了这一领域的关键概念、方法、新型应用和未来趋势。我们总结了低频深度估算方法,这些方法通常基于低频数据各个方向射线辐射的相互作用,如外极面、多视角几何、焦点堆栈和深度学习。我们分析了每种方法所面临的诸多挑战,包括复杂的算法、大量的计算和速度要求。此外,本调查还总结了目前可用的大多数方法,进行了一些对比实验,讨论了结果,并研究了 LF 深度估计的新方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Light field depth estimation: A comprehensive survey from principles to future

Light Field (LF) depth estimation is an important research direction in the area of computer vision and computational photography, which aims to infer the depth information of different objects in three-dimensional scenes by capturing LF data. Given this new era of significance, this article introduces a survey of the key concepts, methods, novel applications, and future trends in this area. We summarize the LF depth estimation methods, which are usually based on the interaction of radiance from rays in all directions of the LF data, such as epipolar-plane, multi-view geometry, focal stack, and deep learning. We analyze the many challenges facing each of these approaches, including complex algorithms, large amounts of computation, and speed requirements. In addition, this survey summarizes most of the currently available methods, conducts some comparative experiments, discusses the results, and investigates the novel directions in LF depth estimation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.70
自引率
0.00%
发文量
0
期刊最新文献
Erratum to “Exploring Personalized Internet of Things (PIoT), social connectivity, and Artificial Social Intelligence (ASI): A survey” [High-Confidence Computing 4 (2024) 100242] Identity-based threshold (multi) signature with private accountability for privacy-preserving blockchain Navigating the Digital Twin Network landscape: A survey on architecture, applications, privacy and security Erratum to “An effective digital audio watermarking using a deep convolutional neural network with a search location optimization algorithm for improvement in Robustness and Imperceptibility” [High-Confid. Comput. 3 (2023) 100153] A lightweight practical consensus mechanism for supply chain blockchain
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1