{"title":"基于改进型 R3 Det 的供热管道识别和泄漏检测方法","authors":"Jiayan Chen, Zhiqian Li, Ping Tang, Shuai Kong, Jiansheng Hu, Qiang Wang","doi":"10.1784/insi.2023.65.11.609","DOIUrl":null,"url":null,"abstract":"In response to the frequent occurrence of leakage accidents in heating pipelines, timely detection of leakage points in such pipelines is of great significance to ensure the safe operation of heating systems. This article proposes a method for detecting leakage points in heating pipelines using drones equipped with infrared thermal imagers, employing a combination of the improved RR3DETDet algorithm and the adaptive threshold method. Firstly, the algorithm identifies the area of the heating pipeline and then employs the adaptive threshold method to detect the presence of leakage points in the identified pipeline area. Additionally, taking into account the morphological characteristics of heating pipelines, the RR3DETDet network is enhanced by introducing variable convolution, enabling more precise extraction of pipeline features. To reduce model overfitting and enhance network expression capabilities, the H-swish activation function is employed to replace the original activation function. Furthermore, candidate anchor boxes are clustered using the K-means++ clustering algorithm to obtain better position regression results and improve training efficiency. The improved algorithm demonstrates significantly better positioning precision compared to the original network. Moreover, an adaptive threshold algorithm is proposed for leak detection and labelling, utilising the original temperature information contained in infrared images. The experimental results demonstrate that this method achieves higher accuracy in detecting leaks in heating pipelines.","PeriodicalId":344397,"journal":{"name":"Insight - Non-Destructive Testing and Condition Monitoring","volume":"64 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heating pipeline identification and leakage detection method based on improved R3 Det\",\"authors\":\"Jiayan Chen, Zhiqian Li, Ping Tang, Shuai Kong, Jiansheng Hu, Qiang Wang\",\"doi\":\"10.1784/insi.2023.65.11.609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In response to the frequent occurrence of leakage accidents in heating pipelines, timely detection of leakage points in such pipelines is of great significance to ensure the safe operation of heating systems. This article proposes a method for detecting leakage points in heating pipelines using drones equipped with infrared thermal imagers, employing a combination of the improved RR3DETDet algorithm and the adaptive threshold method. Firstly, the algorithm identifies the area of the heating pipeline and then employs the adaptive threshold method to detect the presence of leakage points in the identified pipeline area. Additionally, taking into account the morphological characteristics of heating pipelines, the RR3DETDet network is enhanced by introducing variable convolution, enabling more precise extraction of pipeline features. To reduce model overfitting and enhance network expression capabilities, the H-swish activation function is employed to replace the original activation function. Furthermore, candidate anchor boxes are clustered using the K-means++ clustering algorithm to obtain better position regression results and improve training efficiency. The improved algorithm demonstrates significantly better positioning precision compared to the original network. Moreover, an adaptive threshold algorithm is proposed for leak detection and labelling, utilising the original temperature information contained in infrared images. The experimental results demonstrate that this method achieves higher accuracy in detecting leaks in heating pipelines.\",\"PeriodicalId\":344397,\"journal\":{\"name\":\"Insight - Non-Destructive Testing and Condition Monitoring\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Insight - Non-Destructive Testing and Condition Monitoring\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1784/insi.2023.65.11.609\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insight - Non-Destructive Testing and Condition Monitoring","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1784/insi.2023.65.11.609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Heating pipeline identification and leakage detection method based on improved R3 Det
In response to the frequent occurrence of leakage accidents in heating pipelines, timely detection of leakage points in such pipelines is of great significance to ensure the safe operation of heating systems. This article proposes a method for detecting leakage points in heating pipelines using drones equipped with infrared thermal imagers, employing a combination of the improved RR3DETDet algorithm and the adaptive threshold method. Firstly, the algorithm identifies the area of the heating pipeline and then employs the adaptive threshold method to detect the presence of leakage points in the identified pipeline area. Additionally, taking into account the morphological characteristics of heating pipelines, the RR3DETDet network is enhanced by introducing variable convolution, enabling more precise extraction of pipeline features. To reduce model overfitting and enhance network expression capabilities, the H-swish activation function is employed to replace the original activation function. Furthermore, candidate anchor boxes are clustered using the K-means++ clustering algorithm to obtain better position regression results and improve training efficiency. The improved algorithm demonstrates significantly better positioning precision compared to the original network. Moreover, an adaptive threshold algorithm is proposed for leak detection and labelling, utilising the original temperature information contained in infrared images. The experimental results demonstrate that this method achieves higher accuracy in detecting leaks in heating pipelines.