T. A. Chowdhury, S.M.T. Hossain, M.K. Anna, S.A. Ritu, S.F. Nuri
{"title":"利用 SCAPS 对不同缓冲层的硫化锡基太阳能电池进行数值优化","authors":"T. A. Chowdhury, S.M.T. Hossain, M.K. Anna, S.A. Ritu, S.F. Nuri","doi":"10.15251/cl.2023.2011.837","DOIUrl":null,"url":null,"abstract":"Researchers are doing intense research in tin sulfide (SnS)-based solar cells because of their outstanding semiconducting features. In this work, the solar cell capacitance simulator (SCAPS-1D) has been used to do the simulation study of thin films solar cells using SnS absorber layer with different buffer layers (ZnO, ZnSe, CdZnS, TiO2) in comparison to the toxic CdS buffer layer. Photovoltaic parameters (open circuit voltage, fill factor, short-circuit current density and efficiency) is evaluated as a function of absorber layer thickness, different buffer layer and buffer layer thickness. Device stability at different operating temperature is also evaluated. The simulation results reveal the fabrication of high efficiency SnS based solar cells.","PeriodicalId":9710,"journal":{"name":"Chalcogenide Letters","volume":"1 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical optimization of tin sulphide based solar cell for different buffer layers using SCAPS\",\"authors\":\"T. A. Chowdhury, S.M.T. Hossain, M.K. Anna, S.A. Ritu, S.F. Nuri\",\"doi\":\"10.15251/cl.2023.2011.837\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Researchers are doing intense research in tin sulfide (SnS)-based solar cells because of their outstanding semiconducting features. In this work, the solar cell capacitance simulator (SCAPS-1D) has been used to do the simulation study of thin films solar cells using SnS absorber layer with different buffer layers (ZnO, ZnSe, CdZnS, TiO2) in comparison to the toxic CdS buffer layer. Photovoltaic parameters (open circuit voltage, fill factor, short-circuit current density and efficiency) is evaluated as a function of absorber layer thickness, different buffer layer and buffer layer thickness. Device stability at different operating temperature is also evaluated. The simulation results reveal the fabrication of high efficiency SnS based solar cells.\",\"PeriodicalId\":9710,\"journal\":{\"name\":\"Chalcogenide Letters\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chalcogenide Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.15251/cl.2023.2011.837\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chalcogenide Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.15251/cl.2023.2011.837","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Numerical optimization of tin sulphide based solar cell for different buffer layers using SCAPS
Researchers are doing intense research in tin sulfide (SnS)-based solar cells because of their outstanding semiconducting features. In this work, the solar cell capacitance simulator (SCAPS-1D) has been used to do the simulation study of thin films solar cells using SnS absorber layer with different buffer layers (ZnO, ZnSe, CdZnS, TiO2) in comparison to the toxic CdS buffer layer. Photovoltaic parameters (open circuit voltage, fill factor, short-circuit current density and efficiency) is evaluated as a function of absorber layer thickness, different buffer layer and buffer layer thickness. Device stability at different operating temperature is also evaluated. The simulation results reveal the fabrication of high efficiency SnS based solar cells.
期刊介绍:
Chalcogenide Letters (CHL) has the aim to publish rapidly papers in chalcogenide field of research and
appears with twelve issues per year. The journal is open to letters, short communications and breakings news
inserted as Short Notes, in the field of chalcogenide materials either amorphous or crystalline. Short papers in
structure, properties and applications, as well as those covering special properties in nano-structured
chalcogenides are admitted.