通过节点注入对动态图神经网络的恶意攻击

IF 3.2 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS High-Confidence Computing Pub Date : 2023-11-23 DOI:10.1016/j.hcc.2023.100185
Yanan Jiang, Hui Xia
{"title":"通过节点注入对动态图神经网络的恶意攻击","authors":"Yanan Jiang,&nbsp;Hui Xia","doi":"10.1016/j.hcc.2023.100185","DOIUrl":null,"url":null,"abstract":"<div><p>Dynamic graph neural networks (DGNNs) have demonstrated their extraordinary value in many practical applications. Nevertheless, the vulnerability of DNNs is a serious hidden danger as a small disturbance added to the model can markedly reduce its performance. At the same time, current adversarial attack schemes are implemented on static graphs, and the variability of attack models prevents these schemes from transferring to dynamic graphs. In this paper, we use the diffused attack of node injection to attack the DGNNs, and first propose the node injection attack based on structural fragility against DGNNs, named Structural Fragility-based Dynamic Graph Node Injection Attack (SFIA). SFIA firstly determines the target time based on the period weight. Then, it introduces a structural fragile edge selection strategy to establish the target nodes set and link them with the malicious node using serial inject. Finally, an optimization function is designed to generate adversarial features for malicious nodes. Experiments on datasets from four different fields show that SFIA is significantly superior to many comparative approaches. When the graph is injected with 1% of the original total number of nodes through SFIA, the link prediction Recall and MRR of the target DGNN link decrease by 17.4% and 14.3% respectively, and the accuracy of node classification decreases by 8.7%.</p></div>","PeriodicalId":100605,"journal":{"name":"High-Confidence Computing","volume":"4 1","pages":"Article 100185"},"PeriodicalIF":3.2000,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667295223000831/pdfft?md5=63dbda3afe972e585f8cc26ab595cb00&pid=1-s2.0-S2667295223000831-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Adversarial attacks against dynamic graph neural networks via node injection\",\"authors\":\"Yanan Jiang,&nbsp;Hui Xia\",\"doi\":\"10.1016/j.hcc.2023.100185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Dynamic graph neural networks (DGNNs) have demonstrated their extraordinary value in many practical applications. Nevertheless, the vulnerability of DNNs is a serious hidden danger as a small disturbance added to the model can markedly reduce its performance. At the same time, current adversarial attack schemes are implemented on static graphs, and the variability of attack models prevents these schemes from transferring to dynamic graphs. In this paper, we use the diffused attack of node injection to attack the DGNNs, and first propose the node injection attack based on structural fragility against DGNNs, named Structural Fragility-based Dynamic Graph Node Injection Attack (SFIA). SFIA firstly determines the target time based on the period weight. Then, it introduces a structural fragile edge selection strategy to establish the target nodes set and link them with the malicious node using serial inject. Finally, an optimization function is designed to generate adversarial features for malicious nodes. Experiments on datasets from four different fields show that SFIA is significantly superior to many comparative approaches. When the graph is injected with 1% of the original total number of nodes through SFIA, the link prediction Recall and MRR of the target DGNN link decrease by 17.4% and 14.3% respectively, and the accuracy of node classification decreases by 8.7%.</p></div>\",\"PeriodicalId\":100605,\"journal\":{\"name\":\"High-Confidence Computing\",\"volume\":\"4 1\",\"pages\":\"Article 100185\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667295223000831/pdfft?md5=63dbda3afe972e585f8cc26ab595cb00&pid=1-s2.0-S2667295223000831-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High-Confidence Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667295223000831\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High-Confidence Computing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667295223000831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

动态图神经网络(DGNN)已在许多实际应用中展示了其非凡的价值。然而,动态图神经网络的脆弱性是一个严重的隐患,因为在模型中加入一个微小的干扰就会明显降低其性能。同时,目前的对抗性攻击方案是在静态图上实现的,攻击模型的可变性使这些方案无法转移到动态图上。本文利用节点注入的扩散攻击来攻击 DGNN,并首次提出了针对 DGNN 的基于结构脆性的节点注入攻击,命名为基于结构脆性的动态图节点注入攻击(SFIA)。SFIA 首先根据周期权重确定目标时间。然后,它引入了结构脆弱边选择策略来建立目标节点集,并使用串行注入将它们与恶意节点连接起来。最后,设计一个优化函数来生成恶意节点的对抗特征。在四个不同领域的数据集上进行的实验表明,SFIA 明显优于许多比较方法。当通过 SFIA 向图注入原始节点总数的 1%时,目标 DGNN 链接的链接预测 Recall 和 MRR 分别降低了 17.4% 和 14.3%,节点分类的准确率降低了 8.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adversarial attacks against dynamic graph neural networks via node injection

Dynamic graph neural networks (DGNNs) have demonstrated their extraordinary value in many practical applications. Nevertheless, the vulnerability of DNNs is a serious hidden danger as a small disturbance added to the model can markedly reduce its performance. At the same time, current adversarial attack schemes are implemented on static graphs, and the variability of attack models prevents these schemes from transferring to dynamic graphs. In this paper, we use the diffused attack of node injection to attack the DGNNs, and first propose the node injection attack based on structural fragility against DGNNs, named Structural Fragility-based Dynamic Graph Node Injection Attack (SFIA). SFIA firstly determines the target time based on the period weight. Then, it introduces a structural fragile edge selection strategy to establish the target nodes set and link them with the malicious node using serial inject. Finally, an optimization function is designed to generate adversarial features for malicious nodes. Experiments on datasets from four different fields show that SFIA is significantly superior to many comparative approaches. When the graph is injected with 1% of the original total number of nodes through SFIA, the link prediction Recall and MRR of the target DGNN link decrease by 17.4% and 14.3% respectively, and the accuracy of node classification decreases by 8.7%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.70
自引率
0.00%
发文量
0
期刊最新文献
Erratum to “Exploring Personalized Internet of Things (PIoT), social connectivity, and Artificial Social Intelligence (ASI): A survey” [High-Confidence Computing 4 (2024) 100242] Identity-based threshold (multi) signature with private accountability for privacy-preserving blockchain Navigating the Digital Twin Network landscape: A survey on architecture, applications, privacy and security Erratum to “An effective digital audio watermarking using a deep convolutional neural network with a search location optimization algorithm for improvement in Robustness and Imperceptibility” [High-Confid. Comput. 3 (2023) 100153] A lightweight practical consensus mechanism for supply chain blockchain
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1