碱性电解槽制氢能效调查

Olha Lysenko, Valerii Ikonnikov
{"title":"碱性电解槽制氢能效调查","authors":"Olha Lysenko, Valerii Ikonnikov","doi":"10.15587/2706-5448.2023.290309","DOIUrl":null,"url":null,"abstract":"The object of research is the energy efficiency of the electrolysis process in electrolyzers with alkaline electrolyte electrical parameters. The existing problem consists in obtaining the energy efficiency of the process in an electrolyzer with an alkaline electrolyte of more than 65 %. To solve this problem, it is proposed to manufacture an electrolyzer with metal electrodes made of stainless steel and separated from each other by a gas-tight membrane (Bologna cloth) to separate hydrogen and oxygen gases. To establish the energy efficiency characteristics, an experimental installation was made, and the necessary measuring equipment was also used. In the course of the work, a research methodology was developed and the necessary calculation of the measured values was carried out. As a result, the influence of the operating voltage on the consumption of the current flowing through the electrodes of the electrolyzer and the power consumed by it was revealed, the values of which increase with the increase of the operating voltage. It was established that the energy efficiency of the process in electrolyzers with an alkaline electrolyte decreases with an increase in the operating voltage. At operating voltages of 3 V, 4 V, and 5 V, the energy efficiency is 85.7 %, 77 %, and 70 %, respectively. The proposed technique involves conducting experimental studies directly on a functioning electrolyzer. The practical implementation of the use of a gas-tight membrane (Bologna fabric) can help reduce the cost of manufacturing an electrolyzer. Therefore, the presented research will be useful for the industrial production of hydrogen.","PeriodicalId":22480,"journal":{"name":"Technology audit and production reserves","volume":"57 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of energy efficiency of hydrogen production in alkaline electrolysers\",\"authors\":\"Olha Lysenko, Valerii Ikonnikov\",\"doi\":\"10.15587/2706-5448.2023.290309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The object of research is the energy efficiency of the electrolysis process in electrolyzers with alkaline electrolyte electrical parameters. The existing problem consists in obtaining the energy efficiency of the process in an electrolyzer with an alkaline electrolyte of more than 65 %. To solve this problem, it is proposed to manufacture an electrolyzer with metal electrodes made of stainless steel and separated from each other by a gas-tight membrane (Bologna cloth) to separate hydrogen and oxygen gases. To establish the energy efficiency characteristics, an experimental installation was made, and the necessary measuring equipment was also used. In the course of the work, a research methodology was developed and the necessary calculation of the measured values was carried out. As a result, the influence of the operating voltage on the consumption of the current flowing through the electrodes of the electrolyzer and the power consumed by it was revealed, the values of which increase with the increase of the operating voltage. It was established that the energy efficiency of the process in electrolyzers with an alkaline electrolyte decreases with an increase in the operating voltage. At operating voltages of 3 V, 4 V, and 5 V, the energy efficiency is 85.7 %, 77 %, and 70 %, respectively. The proposed technique involves conducting experimental studies directly on a functioning electrolyzer. The practical implementation of the use of a gas-tight membrane (Bologna fabric) can help reduce the cost of manufacturing an electrolyzer. Therefore, the presented research will be useful for the industrial production of hydrogen.\",\"PeriodicalId\":22480,\"journal\":{\"name\":\"Technology audit and production reserves\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Technology audit and production reserves\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15587/2706-5448.2023.290309\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technology audit and production reserves","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15587/2706-5448.2023.290309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究对象是碱性电解质电解槽电解过程的能效。目前的问题是如何使碱性电解液电解槽中的电解过程能效超过 65%。为解决这一问题,建议制造一种带有不锈钢金属电极的电解槽,电极之间用气密膜(博洛尼亚布)隔开,以分离氢气和氧气。为了确定能效特性,制作了一个实验装置,并使用了必要的测量设备。在工作过程中,制定了一套研究方法,并对测量值进行了必要的计算。结果发现,工作电压对流经电解槽电极的电流消耗及其消耗的功率有影响,其值随工作电压的增加而增加。结果表明,碱性电解质电解槽的能效随工作电压的升高而降低。在 3 V、4 V 和 5 V 的工作电压下,能量效率分别为 85.7%、77% 和 70%。所建议的技术包括直接在一个正常运行的电解槽上进行实验研究。气密膜(博洛尼亚织物)的实际使用有助于降低电解槽的制造成本。因此,本研究将有助于氢气的工业生产。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigation of energy efficiency of hydrogen production in alkaline electrolysers
The object of research is the energy efficiency of the electrolysis process in electrolyzers with alkaline electrolyte electrical parameters. The existing problem consists in obtaining the energy efficiency of the process in an electrolyzer with an alkaline electrolyte of more than 65 %. To solve this problem, it is proposed to manufacture an electrolyzer with metal electrodes made of stainless steel and separated from each other by a gas-tight membrane (Bologna cloth) to separate hydrogen and oxygen gases. To establish the energy efficiency characteristics, an experimental installation was made, and the necessary measuring equipment was also used. In the course of the work, a research methodology was developed and the necessary calculation of the measured values was carried out. As a result, the influence of the operating voltage on the consumption of the current flowing through the electrodes of the electrolyzer and the power consumed by it was revealed, the values of which increase with the increase of the operating voltage. It was established that the energy efficiency of the process in electrolyzers with an alkaline electrolyte decreases with an increase in the operating voltage. At operating voltages of 3 V, 4 V, and 5 V, the energy efficiency is 85.7 %, 77 %, and 70 %, respectively. The proposed technique involves conducting experimental studies directly on a functioning electrolyzer. The practical implementation of the use of a gas-tight membrane (Bologna fabric) can help reduce the cost of manufacturing an electrolyzer. Therefore, the presented research will be useful for the industrial production of hydrogen.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
89
审稿时长
8 weeks
期刊最新文献
Technology audit of the Nigerian agricultural sector: towards food security Estimation of global nanomedicine market: status, segment analysis, dynamics, competition and prospects Exploring the possibility of undesirable manufacturing heritage reduction in parts made of composites and their joints Comprehensive physicochemical characterization of Algerian coal powders for the engineering of advanced sustainable materials Research into arsenic (III) effective catalytic oxidation in an aqueous solution on a new active manganese dioxide in a flow column
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1