家庭调查数据中优先编辑的评分函数:机器学习方法

Nicolás Forteza, Sandra García-Uribe
{"title":"家庭调查数据中优先编辑的评分函数:机器学习方法","authors":"Nicolás Forteza, Sandra García-Uribe","doi":"10.53479/34613","DOIUrl":null,"url":null,"abstract":"Errors in the collection of household finance survey data may proliferate in population estimates, especially when there is oversampling of some population groups. Manual case-by-case revision has been commonly applied in order to identify and correct potential errors and omissions such as omitted or misreported assets, income and debts. We derive a machine learning approach for the purpose of classifying survey data affected by severe errors and omissions in the revision phase. Using data from the Spanish Survey of Household Finances we provide the best-performing supervised classification algorithm for the task of prioritizing cases with substantial errors and omissions. Our results show that a Gradient Boosting Trees classifier outperforms several competing classifiers. We also provide a framework that takes into account the trade-off between precision and recall in the survey agency in order to select the optimal classification threshold.","PeriodicalId":296461,"journal":{"name":"Documentos de Trabajo","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Score Function to Prioritize Editing in Household Survey Data: A Machine Learning Approach\",\"authors\":\"Nicolás Forteza, Sandra García-Uribe\",\"doi\":\"10.53479/34613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Errors in the collection of household finance survey data may proliferate in population estimates, especially when there is oversampling of some population groups. Manual case-by-case revision has been commonly applied in order to identify and correct potential errors and omissions such as omitted or misreported assets, income and debts. We derive a machine learning approach for the purpose of classifying survey data affected by severe errors and omissions in the revision phase. Using data from the Spanish Survey of Household Finances we provide the best-performing supervised classification algorithm for the task of prioritizing cases with substantial errors and omissions. Our results show that a Gradient Boosting Trees classifier outperforms several competing classifiers. We also provide a framework that takes into account the trade-off between precision and recall in the survey agency in order to select the optimal classification threshold.\",\"PeriodicalId\":296461,\"journal\":{\"name\":\"Documentos de Trabajo\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Documentos de Trabajo\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53479/34613\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Documentos de Trabajo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53479/34613","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

家庭财务调查数据收集过程中的错误可能会在人口估计中大量出现,尤其是在对某些人口群体进行过量抽样时。为了识别和纠正潜在的错误和遗漏,如遗漏或误报的资产、收入和债务,通常采用人工逐个修订的方法。我们提出了一种机器学习方法,用于在修订阶段对受严重错误和遗漏影响的调查数据进行分类。利用西班牙家庭财务状况调查的数据,我们提供了性能最佳的监督分类算法,用于优先处理存在严重错误和遗漏的案例。我们的结果表明,梯度提升树分类器的表现优于几种竞争分类器。我们还提供了一个框架,该框架考虑了调查机构在精确度和召回率之间的权衡,以便选择最佳分类阈值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Score Function to Prioritize Editing in Household Survey Data: A Machine Learning Approach
Errors in the collection of household finance survey data may proliferate in population estimates, especially when there is oversampling of some population groups. Manual case-by-case revision has been commonly applied in order to identify and correct potential errors and omissions such as omitted or misreported assets, income and debts. We derive a machine learning approach for the purpose of classifying survey data affected by severe errors and omissions in the revision phase. Using data from the Spanish Survey of Household Finances we provide the best-performing supervised classification algorithm for the task of prioritizing cases with substantial errors and omissions. Our results show that a Gradient Boosting Trees classifier outperforms several competing classifiers. We also provide a framework that takes into account the trade-off between precision and recall in the survey agency in order to select the optimal classification threshold.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Green energy transition and vulnerability to external shocks Access to credit and firm survival during a crisis: the case of zero-bank-debt firms Shadow seniority? Lending relationships and borrowers’ selective default Stabilisation properties of a sure-like European unemployment insurance The effects of the ECB’s unconventional monetary policies from 2011 to 2018 on banking assets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1