利用新型封装技术对 AA4032 增强纳米 Si3N4 的硬度进行实验研究

Q4 Materials Science NanoWorld Journal Pub Date : 2023-10-16 DOI:10.17756/nwj.2023-s3-073
Hemachandran Bharath, L. Natrayan, A. Saravanan
{"title":"利用新型封装技术对 AA4032 增强纳米 Si3N4 的硬度进行实验研究","authors":"Hemachandran Bharath, L. Natrayan, A. Saravanan","doi":"10.17756/nwj.2023-s3-073","DOIUrl":null,"url":null,"abstract":"This study compared the hardness of composites reinforced with 10% nano Si 3 N 4 and produced using a novel encapsulation technique to as-cast AA4032. The samples for both groups were produced using the stir-casting method and a new encapsulating approach. For group 1, the combination of nano Si 3 N 4 (10%) and AA4032 was used as a composite, while for group 2, AA4032 as-cast was used. The samples were created following ASTM E92 criteria, and their hardness was assessed using a Vickers hardness machine. In each group, there were 20 samples. G-power of 80% = 0.05 per set and a total sample size of 40 were used to calculate the sample size. The 10% nano Si 3 N 4 filled material was the most challenging material, which was 35% tougher than the as-cast AA4032. According to the t-test statistical analysis, the mean-variance of hardness between group 1 and group 2 differs by p = 0.00 (p < 0.05). Within the constraints of this work, it is clear that the inclusion of 10% nano Si 3 N 4 reinforcement dramatically increases the hardness of the AA4032 composite.","PeriodicalId":36802,"journal":{"name":"NanoWorld Journal","volume":"255 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Investigation on Hardness of AA4032 Reinforced Nano Si3N4 Using Novel Encapsulate Technique\",\"authors\":\"Hemachandran Bharath, L. Natrayan, A. Saravanan\",\"doi\":\"10.17756/nwj.2023-s3-073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study compared the hardness of composites reinforced with 10% nano Si 3 N 4 and produced using a novel encapsulation technique to as-cast AA4032. The samples for both groups were produced using the stir-casting method and a new encapsulating approach. For group 1, the combination of nano Si 3 N 4 (10%) and AA4032 was used as a composite, while for group 2, AA4032 as-cast was used. The samples were created following ASTM E92 criteria, and their hardness was assessed using a Vickers hardness machine. In each group, there were 20 samples. G-power of 80% = 0.05 per set and a total sample size of 40 were used to calculate the sample size. The 10% nano Si 3 N 4 filled material was the most challenging material, which was 35% tougher than the as-cast AA4032. According to the t-test statistical analysis, the mean-variance of hardness between group 1 and group 2 differs by p = 0.00 (p < 0.05). Within the constraints of this work, it is clear that the inclusion of 10% nano Si 3 N 4 reinforcement dramatically increases the hardness of the AA4032 composite.\",\"PeriodicalId\":36802,\"journal\":{\"name\":\"NanoWorld Journal\",\"volume\":\"255 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NanoWorld Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17756/nwj.2023-s3-073\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NanoWorld Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17756/nwj.2023-s3-073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

摘要

本研究比较了使用 10% 纳米 Si 3 N 4 增强并采用新型封装技术生产的复合材料与原铸 AA4032 的硬度。两组样品均采用搅拌铸造法和新型封装方法生产。第 1 组使用纳米 Si 3 N 4(10%)和 AA4032 的组合作为复合材料,而第 2 组则使用原铸 AA4032。样品按照 ASTM E92 标准制作,并使用维氏硬度计对其硬度进行评估。每组有 20 个样品。每组的 G 功率为 80% = 0.05,总样本量为 40,以此计算样本量。填充了 10% 纳米 Si 3 N 4 的材料是最具挑战性的材料,其硬度比铸造时的 AA4032 高 35%。根据 t 检验统计分析,第 1 组和第 2 组的硬度平均方差相差 p = 0.00(p < 0.05)。在这项工作的限制条件下,很明显,加入 10% 的纳米 Si 3 N 4 增强材料可显著提高 AA4032 复合材料的硬度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental Investigation on Hardness of AA4032 Reinforced Nano Si3N4 Using Novel Encapsulate Technique
This study compared the hardness of composites reinforced with 10% nano Si 3 N 4 and produced using a novel encapsulation technique to as-cast AA4032. The samples for both groups were produced using the stir-casting method and a new encapsulating approach. For group 1, the combination of nano Si 3 N 4 (10%) and AA4032 was used as a composite, while for group 2, AA4032 as-cast was used. The samples were created following ASTM E92 criteria, and their hardness was assessed using a Vickers hardness machine. In each group, there were 20 samples. G-power of 80% = 0.05 per set and a total sample size of 40 were used to calculate the sample size. The 10% nano Si 3 N 4 filled material was the most challenging material, which was 35% tougher than the as-cast AA4032. According to the t-test statistical analysis, the mean-variance of hardness between group 1 and group 2 differs by p = 0.00 (p < 0.05). Within the constraints of this work, it is clear that the inclusion of 10% nano Si 3 N 4 reinforcement dramatically increases the hardness of the AA4032 composite.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
NanoWorld Journal
NanoWorld Journal Materials Science-Polymers and Plastics
自引率
0.00%
发文量
8
期刊最新文献
Marine Actinomycetes Siderophores: Types, High Throughput Characterization Techniques, Applications, and Their Association with Nanotechnology: A Comprehensive Review Efficacy of Metallic Nanoparticles and Nanocarriers as an Advanced Tool for Imaging and Diagnosis: Insight into Theranostic Applications Enrichment of Tensile Properties for AA7178/Nano ZrO2/Fly Ash Metal-matrix Composite via Novel Encapsulate Stir Casting Technique by Drilling Process Comparative Performance Analysis of Novel Single-slope Conventional Solar Still and Solar Still with Fe2O3 Water Nanofluids Through Experimental Investigation Investigation on Tribological Properties of AA5059 Reinforced Nano Kaolinite Metal Matrix Composite Using Novel Encapsulate Technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1