利用新型封装搅拌铸造技术研究 AA8176 增强纳米石墨烯的硬度

Q4 Materials Science NanoWorld Journal Pub Date : 2023-10-16 DOI:10.17756/nwj.2023-s3-074
S. Babu, L. Natrayan, A. Saravanan
{"title":"利用新型封装搅拌铸造技术研究 AA8176 增强纳米石墨烯的硬度","authors":"S. Babu, L. Natrayan, A. Saravanan","doi":"10.17756/nwj.2023-s3-074","DOIUrl":null,"url":null,"abstract":"The primary objective of this study was to gauge and subsequently analyze the hardness quotient of AA8176 when reinforced with 10% nano graphene. This amalgamation was achieved through an innovative encapsulation method, and the outcome was juxtaposed against the hardness of the as-cast AA8176. A distinctive encapsulation stir-casting technique was the methodology chosen for the fabrication of the samples in both groups. Group 1 was the product of an amal-gamation between nano graphene (comprising 10% of the total) and AA8176. Conversely, group 2 exclusively utilized AA8176. Adherence to the ASTM E92 standards was paramount in the preparation of these samples. The hardness of these prepared samples was then discerned by employing a Vickers hardness apparatus. Each of the two groups had a set of 20 meticulously prepared samples. The computational procedure to determine the sample size was anchored in a G-power of 80%, with an α value set at 0.05, resulting in a total sample size of 40. The results revealed that the hardness apex was achieved with the material infused with 10% graphene, registering a hardness uptick of 25% in comparison to the as-cast AA8176. The t-test, a statistical analytical tool, confirmed a marked variance in the hardness mean between the two groups, registering a significant p-value of 0.00 (p < 0.05). Drawing from the evidence and data presented within the contours of this research, one can conclusively infer that the integration of 10% nano graphene into the AA8176 composite markedly elevates its hardness.","PeriodicalId":36802,"journal":{"name":"NanoWorld Journal","volume":"206 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation on Hardness of AA8176 Reinforced Nano Graphene Using Novel Encapsulate Stir Casting Technique\",\"authors\":\"S. Babu, L. Natrayan, A. Saravanan\",\"doi\":\"10.17756/nwj.2023-s3-074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The primary objective of this study was to gauge and subsequently analyze the hardness quotient of AA8176 when reinforced with 10% nano graphene. This amalgamation was achieved through an innovative encapsulation method, and the outcome was juxtaposed against the hardness of the as-cast AA8176. A distinctive encapsulation stir-casting technique was the methodology chosen for the fabrication of the samples in both groups. Group 1 was the product of an amal-gamation between nano graphene (comprising 10% of the total) and AA8176. Conversely, group 2 exclusively utilized AA8176. Adherence to the ASTM E92 standards was paramount in the preparation of these samples. The hardness of these prepared samples was then discerned by employing a Vickers hardness apparatus. Each of the two groups had a set of 20 meticulously prepared samples. The computational procedure to determine the sample size was anchored in a G-power of 80%, with an α value set at 0.05, resulting in a total sample size of 40. The results revealed that the hardness apex was achieved with the material infused with 10% graphene, registering a hardness uptick of 25% in comparison to the as-cast AA8176. The t-test, a statistical analytical tool, confirmed a marked variance in the hardness mean between the two groups, registering a significant p-value of 0.00 (p < 0.05). Drawing from the evidence and data presented within the contours of this research, one can conclusively infer that the integration of 10% nano graphene into the AA8176 composite markedly elevates its hardness.\",\"PeriodicalId\":36802,\"journal\":{\"name\":\"NanoWorld Journal\",\"volume\":\"206 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NanoWorld Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17756/nwj.2023-s3-074\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NanoWorld Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17756/nwj.2023-s3-074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

摘要

本研究的主要目的是测量和分析 AA8176 在添加 10% 纳米石墨烯后的硬度商数。这种混合是通过一种创新的封装方法实现的,其结果与铸件 AA8176 的硬度相比较。两组样品的制造均采用了独特的封装搅拌铸造技术。第 1 组是纳米石墨烯(占总量的 10%)与 AA8176 混合的产物。相反,第 2 组只使用 AA8176。在制备这些样品时,必须严格遵守 ASTM E92 标准。然后,使用维氏硬度计检测这些制备好的样品的硬度。两组样品中每组都有 20 个精心制备的样品。确定样本量的计算程序以 80% 的 G 功率为基础,α 值设定为 0.05,因此样本总量为 40 个。结果显示,注入 10% 石墨烯的材料达到了硬度顶点,与铸件 AA8176 相比,硬度提高了 25%。统计分析工具 t 检验证实了两组之间硬度平均值的显著差异,p 值为 0.00(p < 0.05)。根据本研究提供的证据和数据,我们可以得出结论:在 AA8176 复合材料中加入 10% 的纳米石墨烯可显著提高其硬度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigation on Hardness of AA8176 Reinforced Nano Graphene Using Novel Encapsulate Stir Casting Technique
The primary objective of this study was to gauge and subsequently analyze the hardness quotient of AA8176 when reinforced with 10% nano graphene. This amalgamation was achieved through an innovative encapsulation method, and the outcome was juxtaposed against the hardness of the as-cast AA8176. A distinctive encapsulation stir-casting technique was the methodology chosen for the fabrication of the samples in both groups. Group 1 was the product of an amal-gamation between nano graphene (comprising 10% of the total) and AA8176. Conversely, group 2 exclusively utilized AA8176. Adherence to the ASTM E92 standards was paramount in the preparation of these samples. The hardness of these prepared samples was then discerned by employing a Vickers hardness apparatus. Each of the two groups had a set of 20 meticulously prepared samples. The computational procedure to determine the sample size was anchored in a G-power of 80%, with an α value set at 0.05, resulting in a total sample size of 40. The results revealed that the hardness apex was achieved with the material infused with 10% graphene, registering a hardness uptick of 25% in comparison to the as-cast AA8176. The t-test, a statistical analytical tool, confirmed a marked variance in the hardness mean between the two groups, registering a significant p-value of 0.00 (p < 0.05). Drawing from the evidence and data presented within the contours of this research, one can conclusively infer that the integration of 10% nano graphene into the AA8176 composite markedly elevates its hardness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
NanoWorld Journal
NanoWorld Journal Materials Science-Polymers and Plastics
自引率
0.00%
发文量
8
期刊最新文献
Marine Actinomycetes Siderophores: Types, High Throughput Characterization Techniques, Applications, and Their Association with Nanotechnology: A Comprehensive Review Efficacy of Metallic Nanoparticles and Nanocarriers as an Advanced Tool for Imaging and Diagnosis: Insight into Theranostic Applications Enrichment of Tensile Properties for AA7178/Nano ZrO2/Fly Ash Metal-matrix Composite via Novel Encapsulate Stir Casting Technique by Drilling Process Comparative Performance Analysis of Novel Single-slope Conventional Solar Still and Solar Still with Fe2O3 Water Nanofluids Through Experimental Investigation Investigation on Tribological Properties of AA5059 Reinforced Nano Kaolinite Metal Matrix Composite Using Novel Encapsulate Technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1