通过纳米级碳化硼增强增强 AA6063 基复合材料的机械和摩擦学性能

Q4 Materials Science NanoWorld Journal Pub Date : 2023-10-11 DOI:10.17756/nwj.2023-s3-056
Manu Yadakere Murthygowda, Vettrivel Arul, Eugenia Naranjo, Miguel Escobar, Edwin Pozo, Freddy Ajila, Gurusamy Sathish Kumar
{"title":"通过纳米级碳化硼增强增强 AA6063 基复合材料的机械和摩擦学性能","authors":"Manu Yadakere Murthygowda, Vettrivel Arul, Eugenia Naranjo, Miguel Escobar, Edwin Pozo, Freddy Ajila, Gurusamy Sathish Kumar","doi":"10.17756/nwj.2023-s3-056","DOIUrl":null,"url":null,"abstract":"In this study, an investigation was conducted to assess the influence of nanoscale boron carbide (nB 4 C) particles on the mechanical and tribological properties of AA6063 matrix composites. Using a mechanical stirrer, researchers mixed together AA6063 matrix composites with various amounts of nB 4 C (from 0 to 2.0 wt.%). The experimental results demonstrated that the addition of nB 4 C not only increased the elastic modulus of the material but also led to an enhancement in its brittle behavior, consequently reducing the failure strain significantly. Furthermore, the addition of nB 4 C exhibited notable improvements in the shear modulus and flexural shear modulus of the composites. Notably, the introduction of nB 4 C into the AA6063 matrix resulted in reduced subsurface fatigue wear and increased wear resistance, attributed to the beneficial lubricating properties of B 4 C. Various tests were conducted to evaluate parameters such as wear, micro-structure, morphology, density and voids, hardness, flexural and tensile strength. The results indicated that the addition of nB 4 C led to enhanced wear resistance and tensile strength in the composites. Specifically, the highest wear resistance and tensile strength were achieved with the inclusion of 2 wt.% nB 4 C in the aluminum (Al) metal matrix composite. Microscopical analysis further revealed a consistent and uniform distribution of B 4 C particles throughout the Al matrix, indicating a promising dispersion of the reinforcement material within the composite.","PeriodicalId":36802,"journal":{"name":"NanoWorld Journal","volume":"90 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Mechanical and Tribological Properties of AA6063 Matrix Composites Through Nanoscale Boron Carbide Reinforcement\",\"authors\":\"Manu Yadakere Murthygowda, Vettrivel Arul, Eugenia Naranjo, Miguel Escobar, Edwin Pozo, Freddy Ajila, Gurusamy Sathish Kumar\",\"doi\":\"10.17756/nwj.2023-s3-056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, an investigation was conducted to assess the influence of nanoscale boron carbide (nB 4 C) particles on the mechanical and tribological properties of AA6063 matrix composites. Using a mechanical stirrer, researchers mixed together AA6063 matrix composites with various amounts of nB 4 C (from 0 to 2.0 wt.%). The experimental results demonstrated that the addition of nB 4 C not only increased the elastic modulus of the material but also led to an enhancement in its brittle behavior, consequently reducing the failure strain significantly. Furthermore, the addition of nB 4 C exhibited notable improvements in the shear modulus and flexural shear modulus of the composites. Notably, the introduction of nB 4 C into the AA6063 matrix resulted in reduced subsurface fatigue wear and increased wear resistance, attributed to the beneficial lubricating properties of B 4 C. Various tests were conducted to evaluate parameters such as wear, micro-structure, morphology, density and voids, hardness, flexural and tensile strength. The results indicated that the addition of nB 4 C led to enhanced wear resistance and tensile strength in the composites. Specifically, the highest wear resistance and tensile strength were achieved with the inclusion of 2 wt.% nB 4 C in the aluminum (Al) metal matrix composite. Microscopical analysis further revealed a consistent and uniform distribution of B 4 C particles throughout the Al matrix, indicating a promising dispersion of the reinforcement material within the composite.\",\"PeriodicalId\":36802,\"journal\":{\"name\":\"NanoWorld Journal\",\"volume\":\"90 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NanoWorld Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17756/nwj.2023-s3-056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NanoWorld Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17756/nwj.2023-s3-056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

摘要

本研究评估了纳米级碳化硼(nB 4 C)颗粒对 AA6063 基复合材料机械性能和摩擦学性能的影响。研究人员使用机械搅拌器将 AA6063 基复合材料与不同量的 nB 4 C(0 至 2.0 wt.%)混合在一起。实验结果表明,添加 nB 4 C 不仅能提高材料的弹性模量,还能增强其脆性行为,从而显著降低破坏应变。此外,添加 nB 4 C 还明显改善了复合材料的剪切模量和弯曲剪切模量。值得注意的是,在 AA6063 基体中引入 nB 4 C 后,表面下疲劳磨损减少,耐磨性提高,这归功于 B 4 C 的有利润滑特性。结果表明,添加 nB 4 C 可增强复合材料的耐磨性和抗拉强度。具体而言,在铝(Al)金属基复合材料中加入 2 wt.% nB 4 C 时,耐磨性和抗拉强度最高。显微分析进一步显示,B 4 C 颗粒在整个铝基体中的分布一致且均匀,这表明增强材料在复合材料中的分散情况良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing Mechanical and Tribological Properties of AA6063 Matrix Composites Through Nanoscale Boron Carbide Reinforcement
In this study, an investigation was conducted to assess the influence of nanoscale boron carbide (nB 4 C) particles on the mechanical and tribological properties of AA6063 matrix composites. Using a mechanical stirrer, researchers mixed together AA6063 matrix composites with various amounts of nB 4 C (from 0 to 2.0 wt.%). The experimental results demonstrated that the addition of nB 4 C not only increased the elastic modulus of the material but also led to an enhancement in its brittle behavior, consequently reducing the failure strain significantly. Furthermore, the addition of nB 4 C exhibited notable improvements in the shear modulus and flexural shear modulus of the composites. Notably, the introduction of nB 4 C into the AA6063 matrix resulted in reduced subsurface fatigue wear and increased wear resistance, attributed to the beneficial lubricating properties of B 4 C. Various tests were conducted to evaluate parameters such as wear, micro-structure, morphology, density and voids, hardness, flexural and tensile strength. The results indicated that the addition of nB 4 C led to enhanced wear resistance and tensile strength in the composites. Specifically, the highest wear resistance and tensile strength were achieved with the inclusion of 2 wt.% nB 4 C in the aluminum (Al) metal matrix composite. Microscopical analysis further revealed a consistent and uniform distribution of B 4 C particles throughout the Al matrix, indicating a promising dispersion of the reinforcement material within the composite.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
NanoWorld Journal
NanoWorld Journal Materials Science-Polymers and Plastics
自引率
0.00%
发文量
8
期刊最新文献
Marine Actinomycetes Siderophores: Types, High Throughput Characterization Techniques, Applications, and Their Association with Nanotechnology: A Comprehensive Review Efficacy of Metallic Nanoparticles and Nanocarriers as an Advanced Tool for Imaging and Diagnosis: Insight into Theranostic Applications Enrichment of Tensile Properties for AA7178/Nano ZrO2/Fly Ash Metal-matrix Composite via Novel Encapsulate Stir Casting Technique by Drilling Process Comparative Performance Analysis of Novel Single-slope Conventional Solar Still and Solar Still with Fe2O3 Water Nanofluids Through Experimental Investigation Investigation on Tribological Properties of AA5059 Reinforced Nano Kaolinite Metal Matrix Composite Using Novel Encapsulate Technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1