超声波空化对亚麻籽油基乳液脂肪酸组成的影响

Olga Vladimirovna Feofilaktova, Vladislav Lvovich Feigelman, Said Abdellatif Said Aboushanab, Elena Geranovna Kovaleva
{"title":"超声波空化对亚麻籽油基乳液脂肪酸组成的影响","authors":"Olga Vladimirovna Feofilaktova, Vladislav Lvovich Feigelman, Said Abdellatif Said Aboushanab, Elena Geranovna Kovaleva","doi":"10.14258/jcprm.20230311781","DOIUrl":null,"url":null,"abstract":"Ultrasonic homogenization is a promising method of emulsion formation. Linseed oil containing polyunsaturated fatty acids in the optimal ratio was used as a control sample and the fat base of the emulsions. The effect of ultrasonic treatment can lead to a change in the percentage of fatty acids due to the acceleration and initiation of several chemical reactions. To assess the feasibility of using ultrasound in food production, the fatty acid composition of natural linseed oil and emulsions obtained from it, treated by ultrasound with different durations were studied. The study monitored the formation of radicals since increasing temperature and pressure during the collapse of cavitation bubbles initiates the formation of free hydrogen H- and hydroxyl OH- radicals within and next to them. These may initiate the oxidation of bioorganic compounds in the food product. The research results show that emulsions exposure to the ultrasound at a frequency of 20 kHz for 10, 20 and 30 minutes are capable to maintain the ratio of fatty acids while obtaining a homogeneous, finely dispersed and stable food emulsion. Deviations in the values characterizing the fatty acids content in the emulsions treated by ultrasound for 10, 20 and 30 minutes as compared with the control sample – linseed oil are insignificant (0.02±0.015% to 0.83±0.015). Using the method of electron paramagnetic resonance, the absence of free radicals was established both in the control sample – flax oil, and in emulsions obtained on its basis, homogenized using ultrasonic exposure.","PeriodicalId":9946,"journal":{"name":"chemistry of plant raw material","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ULTRASONIC CAVITATION EFFECT ON THE FATTY ACID COMPOSITION OF LINSEED OIL-BASED EMULSIONS\",\"authors\":\"Olga Vladimirovna Feofilaktova, Vladislav Lvovich Feigelman, Said Abdellatif Said Aboushanab, Elena Geranovna Kovaleva\",\"doi\":\"10.14258/jcprm.20230311781\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ultrasonic homogenization is a promising method of emulsion formation. Linseed oil containing polyunsaturated fatty acids in the optimal ratio was used as a control sample and the fat base of the emulsions. The effect of ultrasonic treatment can lead to a change in the percentage of fatty acids due to the acceleration and initiation of several chemical reactions. To assess the feasibility of using ultrasound in food production, the fatty acid composition of natural linseed oil and emulsions obtained from it, treated by ultrasound with different durations were studied. The study monitored the formation of radicals since increasing temperature and pressure during the collapse of cavitation bubbles initiates the formation of free hydrogen H- and hydroxyl OH- radicals within and next to them. These may initiate the oxidation of bioorganic compounds in the food product. The research results show that emulsions exposure to the ultrasound at a frequency of 20 kHz for 10, 20 and 30 minutes are capable to maintain the ratio of fatty acids while obtaining a homogeneous, finely dispersed and stable food emulsion. Deviations in the values characterizing the fatty acids content in the emulsions treated by ultrasound for 10, 20 and 30 minutes as compared with the control sample – linseed oil are insignificant (0.02±0.015% to 0.83±0.015). Using the method of electron paramagnetic resonance, the absence of free radicals was established both in the control sample – flax oil, and in emulsions obtained on its basis, homogenized using ultrasonic exposure.\",\"PeriodicalId\":9946,\"journal\":{\"name\":\"chemistry of plant raw material\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"chemistry of plant raw material\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14258/jcprm.20230311781\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"chemistry of plant raw material","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14258/jcprm.20230311781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

超声波均质是一种很有前景的乳化方法。含有最佳比例多不饱和脂肪酸的亚麻籽油被用作对照样本和乳液的脂肪基质。超声波处理会加速和引发多种化学反应,从而导致脂肪酸比例发生变化。为了评估在食品生产中使用超声波的可行性,我们研究了天然亚麻籽油的脂肪酸组成,以及用不同持续时间的超声波处理亚麻籽油得到的乳剂。这项研究对自由基的形成进行了监测,因为在空化气泡崩溃过程中,温度和压力的增加会在气泡内部和旁边形成游离氢 H- 和羟基 OH- 自由基。这些自由基可能会引发食品中生物有机化合物的氧化。研究结果表明,将乳剂暴露在频率为 20 千赫的超声波中 10、20 和 30 分钟,能够保持脂肪酸的比例,同时获得均匀、精细分散和稳定的食品乳剂。用超声波处理 10、20 和 30 分钟的乳状液中脂肪酸含量与对照样品--亚麻籽油--相比,其数值偏差很小(0.02±0.015% 到 0.83±0.015)。利用电子顺磁共振方法,可以确定在对照样本-亚麻油和在其基础上使用超声波均质得到的乳液中都不存在自由基。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ULTRASONIC CAVITATION EFFECT ON THE FATTY ACID COMPOSITION OF LINSEED OIL-BASED EMULSIONS
Ultrasonic homogenization is a promising method of emulsion formation. Linseed oil containing polyunsaturated fatty acids in the optimal ratio was used as a control sample and the fat base of the emulsions. The effect of ultrasonic treatment can lead to a change in the percentage of fatty acids due to the acceleration and initiation of several chemical reactions. To assess the feasibility of using ultrasound in food production, the fatty acid composition of natural linseed oil and emulsions obtained from it, treated by ultrasound with different durations were studied. The study monitored the formation of radicals since increasing temperature and pressure during the collapse of cavitation bubbles initiates the formation of free hydrogen H- and hydroxyl OH- radicals within and next to them. These may initiate the oxidation of bioorganic compounds in the food product. The research results show that emulsions exposure to the ultrasound at a frequency of 20 kHz for 10, 20 and 30 minutes are capable to maintain the ratio of fatty acids while obtaining a homogeneous, finely dispersed and stable food emulsion. Deviations in the values characterizing the fatty acids content in the emulsions treated by ultrasound for 10, 20 and 30 minutes as compared with the control sample – linseed oil are insignificant (0.02±0.015% to 0.83±0.015). Using the method of electron paramagnetic resonance, the absence of free radicals was established both in the control sample – flax oil, and in emulsions obtained on its basis, homogenized using ultrasonic exposure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FEATURES OF ACCUMULATION OF PHENOLIC COMPOUNDS IN ENDEMIC SPECIES ASTRAGALUS IONAE PALIBIN AND A. PALIBINII POLOZHIJ GROWING ON THE TERRITORY OF THE REPUBLIC OF KHAKASIA CONTENT OF CATECHINS IN LEAVES AND ROOTS OF COMARUM SALESOVIANUM AND COMARUM PALUSTRE (ROSACEAE) CHROMATOMASS SPECTROMETRIC STUDY OF LEAVES OF RUBUS IDAEUS L. AND SORBUS AUCUPARIA L. SOUTH OF THE TOMSK REGION THE METHOD OF QUANTITATIVE DETERMINATION OF THE AMOUNT OF FLAVONOIDS IN THE FLOWERS OF GIANT CEPHALARIA MACRO- AND MICROELEMENT COMPOSITION OF THE HERB AND ROOTS OF HAPLOPHYLLUM DAURICUM (L.) G. DON.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1