{"title":"库姆瓦股份公司在生产条件下应用热锻模拟的经验","authors":"Yu. V. Zamaraeva, L. I. Knysh, E. M. Gaisin","doi":"10.17804/2410-9908.2023.5.069-082","DOIUrl":null,"url":null,"abstract":"Software for computer simulation of metal forging processes is a reliable tool for designing dies and developing technological processes, which allows one to avoid defects and predict product quality. The paper describes the experience of the KUMW JSC in simulating with the Deform and QForm software packages. The distinctive advantages of the QForm domestic software are exemplified by the forging of a roller disk. Proceeding from the described advantages, the KUMW JSC has selected QForm as effective software to solve the problems of die forging. The paper provides examples of applying this software. QForm is used to evaluate die filling in the forging of an odd-shaped part. Significant under-forming of the part was identified, and the technology was optimized in order to eliminate them. Additionally, by using this software, the shape and weight of a blank for forging a landing gear leg were optimized, and this has resulted in a 15% increase in geometric yield. After only one die-forged item code was modeled and the durability of the tooling was evaluated from stress intensity and displacement, the tooling material was replaced, the critical zone radius was locally increased, and the method for manufacturing die tooling was altered. This increased tool durability by 28%. The presence of the Hartfield postprocessor subroutine in QForm has made it possible to predict the zones of the occurrence of forging defects during the processing of the odd-shaped part and to correct the production scheme in good time. Each simulation example is supported by industrial experiment.","PeriodicalId":11165,"journal":{"name":"Diagnostics, Resource and Mechanics of materials and structures","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experience in the application of simulation of hot forging in production conditions at the KUMW JSC\",\"authors\":\"Yu. V. Zamaraeva, L. I. Knysh, E. M. Gaisin\",\"doi\":\"10.17804/2410-9908.2023.5.069-082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Software for computer simulation of metal forging processes is a reliable tool for designing dies and developing technological processes, which allows one to avoid defects and predict product quality. The paper describes the experience of the KUMW JSC in simulating with the Deform and QForm software packages. The distinctive advantages of the QForm domestic software are exemplified by the forging of a roller disk. Proceeding from the described advantages, the KUMW JSC has selected QForm as effective software to solve the problems of die forging. The paper provides examples of applying this software. QForm is used to evaluate die filling in the forging of an odd-shaped part. Significant under-forming of the part was identified, and the technology was optimized in order to eliminate them. Additionally, by using this software, the shape and weight of a blank for forging a landing gear leg were optimized, and this has resulted in a 15% increase in geometric yield. After only one die-forged item code was modeled and the durability of the tooling was evaluated from stress intensity and displacement, the tooling material was replaced, the critical zone radius was locally increased, and the method for manufacturing die tooling was altered. This increased tool durability by 28%. The presence of the Hartfield postprocessor subroutine in QForm has made it possible to predict the zones of the occurrence of forging defects during the processing of the odd-shaped part and to correct the production scheme in good time. Each simulation example is supported by industrial experiment.\",\"PeriodicalId\":11165,\"journal\":{\"name\":\"Diagnostics, Resource and Mechanics of materials and structures\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diagnostics, Resource and Mechanics of materials and structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17804/2410-9908.2023.5.069-082\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostics, Resource and Mechanics of materials and structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17804/2410-9908.2023.5.069-082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Experience in the application of simulation of hot forging in production conditions at the KUMW JSC
Software for computer simulation of metal forging processes is a reliable tool for designing dies and developing technological processes, which allows one to avoid defects and predict product quality. The paper describes the experience of the KUMW JSC in simulating with the Deform and QForm software packages. The distinctive advantages of the QForm domestic software are exemplified by the forging of a roller disk. Proceeding from the described advantages, the KUMW JSC has selected QForm as effective software to solve the problems of die forging. The paper provides examples of applying this software. QForm is used to evaluate die filling in the forging of an odd-shaped part. Significant under-forming of the part was identified, and the technology was optimized in order to eliminate them. Additionally, by using this software, the shape and weight of a blank for forging a landing gear leg were optimized, and this has resulted in a 15% increase in geometric yield. After only one die-forged item code was modeled and the durability of the tooling was evaluated from stress intensity and displacement, the tooling material was replaced, the critical zone radius was locally increased, and the method for manufacturing die tooling was altered. This increased tool durability by 28%. The presence of the Hartfield postprocessor subroutine in QForm has made it possible to predict the zones of the occurrence of forging defects during the processing of the odd-shaped part and to correct the production scheme in good time. Each simulation example is supported by industrial experiment.