几何球体内的推力矢量控制,以及利用欧拉提示创建喷流技术

Yu. A. Sazonov, M. A. Mokhov, I. V. Gryaznova, V. Voronova, Kh. A. Tumanyan, Egor I. Konyushkov
{"title":"几何球体内的推力矢量控制,以及利用欧拉提示创建喷流技术","authors":"Yu. A. Sazonov, M. A. Mokhov, I. V. Gryaznova, V. Voronova, Kh. A. Tumanyan, Egor I. Konyushkov","doi":"10.28991/cej-2023-09-10-011","DOIUrl":null,"url":null,"abstract":"This study aims to study the issues of choosing promising directions for the development of jet technology with the creation of energy-conserving technologies. The purpose of this article is to study the issues of choosing promising directions for the development of jet technology with the creation of energy-saving. Methodological approaches have been developed for solving inventive problems within the framework of training modern designers-inventors. A new patentable jet unit has been developed and presented, which makes it possible to control the thrust vector within a complete geometric sphere (when the thrust vector is capable of deviating to any angle ranging from +180° to -180°). For the first time, demonstration versions of a nozzle apparatus capable of realizing such flow reversals through annular channels are shown. The results of computer modeling of nozzle devices are focused on energy, production, and processing of hydrocarbons when distributing energy flows at process facilities. The individual results of the ongoing work can also be used in other industries, for instance, in the creation of small-sized high-speed unmanned vehicles for search and rescue operations. Proposals have been prepared to improve the methodology for solving inventive problems as part of the development of Leonard Euler’s ideas. Doi: 10.28991/CEJ-2023-09-10-011 Full Text: PDF","PeriodicalId":10233,"journal":{"name":"Civil Engineering Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thrust Vector Control within a Geometric Sphere, and the Use of Euler's Tips to Create Jet Technology\",\"authors\":\"Yu. A. Sazonov, M. A. Mokhov, I. V. Gryaznova, V. Voronova, Kh. A. Tumanyan, Egor I. Konyushkov\",\"doi\":\"10.28991/cej-2023-09-10-011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aims to study the issues of choosing promising directions for the development of jet technology with the creation of energy-conserving technologies. The purpose of this article is to study the issues of choosing promising directions for the development of jet technology with the creation of energy-saving. Methodological approaches have been developed for solving inventive problems within the framework of training modern designers-inventors. A new patentable jet unit has been developed and presented, which makes it possible to control the thrust vector within a complete geometric sphere (when the thrust vector is capable of deviating to any angle ranging from +180° to -180°). For the first time, demonstration versions of a nozzle apparatus capable of realizing such flow reversals through annular channels are shown. The results of computer modeling of nozzle devices are focused on energy, production, and processing of hydrocarbons when distributing energy flows at process facilities. The individual results of the ongoing work can also be used in other industries, for instance, in the creation of small-sized high-speed unmanned vehicles for search and rescue operations. Proposals have been prepared to improve the methodology for solving inventive problems as part of the development of Leonard Euler’s ideas. Doi: 10.28991/CEJ-2023-09-10-011 Full Text: PDF\",\"PeriodicalId\":10233,\"journal\":{\"name\":\"Civil Engineering Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Civil Engineering Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28991/cej-2023-09-10-011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Civil Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28991/cej-2023-09-10-011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在研究在创造节能技术的前提下为喷气技术的发展选择有前途的方向的问题。本文旨在研究在创造节能技术的前提下为喷气技术的发展选择有前途的方向的问题。在培训现代设计师-发明家的框架内,已经制定了解决发明问题的方法论。开发并展示了一种可申请专利的新型喷气装置,该装置可以在一个完整的几何球体内控制推力矢量(当推力矢量能够偏离 +180° 至 -180° 之间的任何角度时)。首次展示了能够通过环形通道实现这种流动反转的喷嘴装置的演示版本。喷嘴装置的计算机建模结果主要集中在能源、生产和碳氢化合物加工设施的能量流分配方面。正在进行的工作所取得的个别成果也可用于其他行业,例如用于制造小型高速无人驾驶搜救车。作为伦纳德-欧拉思想发展的一部分,已经准备好了改进解决发明问题方法的建议。Doi: 10.28991/CEJ-2023-09-10-011 全文:PDF
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Thrust Vector Control within a Geometric Sphere, and the Use of Euler's Tips to Create Jet Technology
This study aims to study the issues of choosing promising directions for the development of jet technology with the creation of energy-conserving technologies. The purpose of this article is to study the issues of choosing promising directions for the development of jet technology with the creation of energy-saving. Methodological approaches have been developed for solving inventive problems within the framework of training modern designers-inventors. A new patentable jet unit has been developed and presented, which makes it possible to control the thrust vector within a complete geometric sphere (when the thrust vector is capable of deviating to any angle ranging from +180° to -180°). For the first time, demonstration versions of a nozzle apparatus capable of realizing such flow reversals through annular channels are shown. The results of computer modeling of nozzle devices are focused on energy, production, and processing of hydrocarbons when distributing energy flows at process facilities. The individual results of the ongoing work can also be used in other industries, for instance, in the creation of small-sized high-speed unmanned vehicles for search and rescue operations. Proposals have been prepared to improve the methodology for solving inventive problems as part of the development of Leonard Euler’s ideas. Doi: 10.28991/CEJ-2023-09-10-011 Full Text: PDF
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Eco-friendly 3D Printing Mortar with Low Cement Content: Investigation on Printability and Mechanical Properties Response Reduction Factor for Structures with Significant Irregularities on Different Soil Stratum Assessment of Ground Penetrating Radar for Pyrite Swelling Detection in Soils Strength and Deformability of Structural Steel for Use in Construction Effect of Non-Class Fly Ash on Strength Properties of Concrete
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1