预测相邻建筑物之间足够间距以避免地震引起的撞击的数学方法

Yazan M. Jaradat, Harry Far, Mina Mortazavi
{"title":"预测相邻建筑物之间足够间距以避免地震引起的撞击的数学方法","authors":"Yazan M. Jaradat, Harry Far, Mina Mortazavi","doi":"10.28991/cej-2023-09-10-02","DOIUrl":null,"url":null,"abstract":"Studies on earthquake-related damage underscore that buildings are vulnerable to significant harm or even collapse during moderate to strong ground motions. Of particular concern is seismic-induced pounding, observed in numerous past and recent earthquakes, often resulting from inadequate separation gaps between neighboring structures. This study conducted an experimental and numerical investigation to develop a mathematical equation to calculate a sufficient separation gap in order to avoid the collision between adjacent mid-rise steel-frame buildings during seismic excitation. In this study, the coupled configuration of 15-storey & 10-storey, 15-storey & 5-storey, and 10-storey & 5-storey steel frame structures was considered in the investigation. The investigation concluded with a large number of data outputs. The outputs were used to predict structural behavior during earthquakes. The obtained data were categorized into three main categories according to the earthquake's Peak Ground Acceleration (PGA) levels. Also, the derived equations were divided into three different equations to estimate the required seismic gap between neighboring buildings accordingly. The derived equations are distilled to empower engineers to rigorously evaluate non-irregular mid-rise steel frame buildings. Doi: 10.28991/CEJ-2023-09-10-02 Full Text: PDF","PeriodicalId":10233,"journal":{"name":"Civil Engineering Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Mathematical Approach for Predicting Sufficient Separation Gap between Adjacent Buildings to Avoid Earthquake-Induced Pounding\",\"authors\":\"Yazan M. Jaradat, Harry Far, Mina Mortazavi\",\"doi\":\"10.28991/cej-2023-09-10-02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Studies on earthquake-related damage underscore that buildings are vulnerable to significant harm or even collapse during moderate to strong ground motions. Of particular concern is seismic-induced pounding, observed in numerous past and recent earthquakes, often resulting from inadequate separation gaps between neighboring structures. This study conducted an experimental and numerical investigation to develop a mathematical equation to calculate a sufficient separation gap in order to avoid the collision between adjacent mid-rise steel-frame buildings during seismic excitation. In this study, the coupled configuration of 15-storey & 10-storey, 15-storey & 5-storey, and 10-storey & 5-storey steel frame structures was considered in the investigation. The investigation concluded with a large number of data outputs. The outputs were used to predict structural behavior during earthquakes. The obtained data were categorized into three main categories according to the earthquake's Peak Ground Acceleration (PGA) levels. Also, the derived equations were divided into three different equations to estimate the required seismic gap between neighboring buildings accordingly. The derived equations are distilled to empower engineers to rigorously evaluate non-irregular mid-rise steel frame buildings. Doi: 10.28991/CEJ-2023-09-10-02 Full Text: PDF\",\"PeriodicalId\":10233,\"journal\":{\"name\":\"Civil Engineering Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Civil Engineering Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28991/cej-2023-09-10-02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Civil Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28991/cej-2023-09-10-02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

与地震相关的破坏研究强调,建筑物在中度到强烈的地面运动中很容易受到重大伤害,甚至倒塌。尤其值得关注的是地震引起的撞击,在过去和最近的多次地震中都有观察到,通常是由于相邻建筑之间的分隔间隙不足造成的。本研究通过实验和数值调查,建立了一个数学公式来计算足够的分隔间隙,以避免相邻中层钢结构建筑在地震激励下发生碰撞。本研究考虑了 15 层和 10 层、15 层和 5 层以及 10 层和 5 层钢架结构的耦合配置。调查得出了大量数据输出。这些输出用于预测地震时的结构行为。根据地震的峰值地面加速度 (PGA) 等级,获得的数据被分为三大类。此外,还将推导出的方程式分为三个不同的方程式,以估算相邻建筑物之间所需的抗震间隙。通过对推导公式的提炼,工程师可以对不规则的中层钢结构建筑进行严格评估。Doi: 10.28991/CEJ-2023-09-10-02 全文:PDF
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Mathematical Approach for Predicting Sufficient Separation Gap between Adjacent Buildings to Avoid Earthquake-Induced Pounding
Studies on earthquake-related damage underscore that buildings are vulnerable to significant harm or even collapse during moderate to strong ground motions. Of particular concern is seismic-induced pounding, observed in numerous past and recent earthquakes, often resulting from inadequate separation gaps between neighboring structures. This study conducted an experimental and numerical investigation to develop a mathematical equation to calculate a sufficient separation gap in order to avoid the collision between adjacent mid-rise steel-frame buildings during seismic excitation. In this study, the coupled configuration of 15-storey & 10-storey, 15-storey & 5-storey, and 10-storey & 5-storey steel frame structures was considered in the investigation. The investigation concluded with a large number of data outputs. The outputs were used to predict structural behavior during earthquakes. The obtained data were categorized into three main categories according to the earthquake's Peak Ground Acceleration (PGA) levels. Also, the derived equations were divided into three different equations to estimate the required seismic gap between neighboring buildings accordingly. The derived equations are distilled to empower engineers to rigorously evaluate non-irregular mid-rise steel frame buildings. Doi: 10.28991/CEJ-2023-09-10-02 Full Text: PDF
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Eco-friendly 3D Printing Mortar with Low Cement Content: Investigation on Printability and Mechanical Properties Response Reduction Factor for Structures with Significant Irregularities on Different Soil Stratum Assessment of Ground Penetrating Radar for Pyrite Swelling Detection in Soils Strength and Deformability of Structural Steel for Use in Construction Effect of Non-Class Fly Ash on Strength Properties of Concrete
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1