具有化学反应和粘性耗散的卡松纳米流体薄膜在导热系数可变的非稳定拉伸表面上的磁热传导

IF 2.7 Q3 NANOSCIENCE & NANOTECHNOLOGY Journal of Nanofluids Pub Date : 2023-10-01 DOI:10.1166/jon.2023.2055
D. Pal, Debranjan Chatterjee
{"title":"具有化学反应和粘性耗散的卡松纳米流体薄膜在导热系数可变的非稳定拉伸表面上的磁热传导","authors":"D. Pal, Debranjan Chatterjee","doi":"10.1166/jon.2023.2055","DOIUrl":null,"url":null,"abstract":"This paper addressed unsteady magnetohydrodynamic flow and heat transfer of an incompressible Casson nanofluid thin film past a stretching sheet by considering the features of thermal radiation, chemical reaction, and viscous dissipation. The problem is modeled mathematically, and the governing basic equations are brought into nonlinear ordinary differential equations by utilizing appropriate similarity transformations. Then the transformed equations are then solved numerically by using the bvp4c solver. The influences of pertinent physical variables are performed on velocity, temperature gradient, and nanoparticle concentration gradient profiles. It is seen that the profile of the nanoparticle concentration gradient enhances by increasing the values of the Schmidt number, whereas the opposite trends are observed by increasing the values of the thermophoresis parameter. It is also analyzed that by increasing the values of the thermophoresis parameter, there is an increase in the profiles of the temperature and concentration distributions. The computed results are obtained by giving main consideration to the convergence process and comparing them with the results existing in the literature.","PeriodicalId":47161,"journal":{"name":"Journal of Nanofluids","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magneto-Thermo Heat Transfer of a Chemically Reactive and Viscous Dissipative Casson Nanofluid Thin Film Over an Unsteady Stretching Surface with Variable Thermal Conductivity\",\"authors\":\"D. Pal, Debranjan Chatterjee\",\"doi\":\"10.1166/jon.2023.2055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addressed unsteady magnetohydrodynamic flow and heat transfer of an incompressible Casson nanofluid thin film past a stretching sheet by considering the features of thermal radiation, chemical reaction, and viscous dissipation. The problem is modeled mathematically, and the governing basic equations are brought into nonlinear ordinary differential equations by utilizing appropriate similarity transformations. Then the transformed equations are then solved numerically by using the bvp4c solver. The influences of pertinent physical variables are performed on velocity, temperature gradient, and nanoparticle concentration gradient profiles. It is seen that the profile of the nanoparticle concentration gradient enhances by increasing the values of the Schmidt number, whereas the opposite trends are observed by increasing the values of the thermophoresis parameter. It is also analyzed that by increasing the values of the thermophoresis parameter, there is an increase in the profiles of the temperature and concentration distributions. The computed results are obtained by giving main consideration to the convergence process and comparing them with the results existing in the literature.\",\"PeriodicalId\":47161,\"journal\":{\"name\":\"Journal of Nanofluids\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanofluids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1166/jon.2023.2055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanofluids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/jon.2023.2055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文通过考虑热辐射、化学反应和粘性耗散等特征,研究了不可压缩卡松纳米流体薄膜流过拉伸片的非稳态磁流体力学流动和传热问题。该问题采用数学模型,并通过适当的相似变换将支配基本方程转化为非线性常微分方程。然后使用 bvp4c 求解器对转换后的方程进行数值求解。研究了相关物理变量对速度、温度梯度和纳米粒子浓度梯度剖面的影响。结果表明,随着施密特数数值的增加,纳米粒子浓度梯度剖面会增大,而随着热泳参数数值的增加,则会出现相反的趋势。 此外,还分析了随着热泳参数值的增加,温度和浓度分布曲线也会增加。计算结果主要考虑了收敛过程,并与文献中已有的结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Magneto-Thermo Heat Transfer of a Chemically Reactive and Viscous Dissipative Casson Nanofluid Thin Film Over an Unsteady Stretching Surface with Variable Thermal Conductivity
This paper addressed unsteady magnetohydrodynamic flow and heat transfer of an incompressible Casson nanofluid thin film past a stretching sheet by considering the features of thermal radiation, chemical reaction, and viscous dissipation. The problem is modeled mathematically, and the governing basic equations are brought into nonlinear ordinary differential equations by utilizing appropriate similarity transformations. Then the transformed equations are then solved numerically by using the bvp4c solver. The influences of pertinent physical variables are performed on velocity, temperature gradient, and nanoparticle concentration gradient profiles. It is seen that the profile of the nanoparticle concentration gradient enhances by increasing the values of the Schmidt number, whereas the opposite trends are observed by increasing the values of the thermophoresis parameter. It is also analyzed that by increasing the values of the thermophoresis parameter, there is an increase in the profiles of the temperature and concentration distributions. The computed results are obtained by giving main consideration to the convergence process and comparing them with the results existing in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nanofluids
Journal of Nanofluids NANOSCIENCE & NANOTECHNOLOGY-
自引率
14.60%
发文量
89
期刊介绍: Journal of Nanofluids (JON) is an international multidisciplinary peer-reviewed journal covering a wide range of research topics in the field of nanofluids and fluid science. It is an ideal and unique reference source for scientists and engineers working in this important and emerging research field of science, engineering and technology. The journal publishes full research papers, review articles with author''s photo and short biography, and communications of important new findings encompassing the fundamental and applied research in all aspects of science and engineering of nanofluids and fluid science related developing technologies.
期刊最新文献
Heat Generation/Absorption in MHD Double Diffusive Mixed Convection of Different Nanofluids in a Trapezoidal Enclosure Numerical Investigation of Hybrid Nanofluid Natural Convection and Entropy Generation in a Corrugated Enclosure with an Inner Conducting Block Magnetohydrodynamic Free Convective Flow in a Vertical Microchannel with Heat Sink Unsteady Natural Convection of Dusty Hybrid Nanofluid Flow Between a Wavy and Circular Cylinder with Heat Generation Synergistic Heat Transfer in Enclosures: A Hybrid Nanofluids Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1