研究 Ni-Fe-Cr-Ti-B-C 复合材料的塑性变形能力

N. B. Pugacheva, D. Vichuzhanin, Т. М. Bykova, I. Kamantsev
{"title":"研究 Ni-Fe-Cr-Ti-B-C 复合材料的塑性变形能力","authors":"N. B. Pugacheva, D. Vichuzhanin, Т. М. Bykova, I. Kamantsev","doi":"10.17804/2410-9908.2023.5.015-030","DOIUrl":null,"url":null,"abstract":"The paper studies changes in the structural state of a Ni–Fe–Cr–Ti–B–C composite after hot plastic deformation. The matrix of the composite consists of a mechanical mixture of two solid solutions: austenite and ferrite. Titanium carbide and diboride particles resulting from self-propagating high-temperature synthesis (SHS) are the strengthening phases. Additional strengthening is provided by carbide Cr23C6 and intermetallic Ni3Ti particles formed in austenite during cooling. The constituent with a ferrite matrix, which is a mixture of α-(Cr,Fe) + TiB2 + TiC + Cr23C6, is shown to have the highest ductility. The strongest constituent of the composite is represented by regions with an austenitic matrix and the most abundant TiB2 particles. These regions are characterized by the highest hardness, elastic modulus, elastic recovery Re and wear resistance ratio HIT/E. The hardness of the composite is 58 HRC. For plastic deformation of the composite, it is proposed to perform hot rolling at a heating temperature of 1000 °C under all-round compression. To do this, a composite specimen is pressed into a 10 mm steel shell, with 6 mm steel plates welded on top and from below. True plastic strain ε = 0.6 is achieved under these conditions. EBSD analysis testifies that the deformation is implemented due to dynamic polygonization and recrystallization of the austenitic and ferritic grains of the composite matrix. Dynamic recrystallization prevails in the austenitic grains, whereas dynamic polygonization predominates in the ferritic ones.","PeriodicalId":11165,"journal":{"name":"Diagnostics, Resource and Mechanics of materials and structures","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Studying the plastic deformability of a Ni–Fe–Cr–Ti–B–C composite\",\"authors\":\"N. B. Pugacheva, D. Vichuzhanin, Т. М. Bykova, I. Kamantsev\",\"doi\":\"10.17804/2410-9908.2023.5.015-030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper studies changes in the structural state of a Ni–Fe–Cr–Ti–B–C composite after hot plastic deformation. The matrix of the composite consists of a mechanical mixture of two solid solutions: austenite and ferrite. Titanium carbide and diboride particles resulting from self-propagating high-temperature synthesis (SHS) are the strengthening phases. Additional strengthening is provided by carbide Cr23C6 and intermetallic Ni3Ti particles formed in austenite during cooling. The constituent with a ferrite matrix, which is a mixture of α-(Cr,Fe) + TiB2 + TiC + Cr23C6, is shown to have the highest ductility. The strongest constituent of the composite is represented by regions with an austenitic matrix and the most abundant TiB2 particles. These regions are characterized by the highest hardness, elastic modulus, elastic recovery Re and wear resistance ratio HIT/E. The hardness of the composite is 58 HRC. For plastic deformation of the composite, it is proposed to perform hot rolling at a heating temperature of 1000 °C under all-round compression. To do this, a composite specimen is pressed into a 10 mm steel shell, with 6 mm steel plates welded on top and from below. True plastic strain ε = 0.6 is achieved under these conditions. EBSD analysis testifies that the deformation is implemented due to dynamic polygonization and recrystallization of the austenitic and ferritic grains of the composite matrix. Dynamic recrystallization prevails in the austenitic grains, whereas dynamic polygonization predominates in the ferritic ones.\",\"PeriodicalId\":11165,\"journal\":{\"name\":\"Diagnostics, Resource and Mechanics of materials and structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diagnostics, Resource and Mechanics of materials and structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17804/2410-9908.2023.5.015-030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostics, Resource and Mechanics of materials and structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17804/2410-9908.2023.5.015-030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了热塑性变形后 Ni-Fe-Cr-Ti-B-C 复合材料结构状态的变化。复合材料的基体由奥氏体和铁素体两种固溶体的机械混合物组成。自蔓延高温合成(SHS)产生的碳化钛和二硼化物颗粒是强化相。奥氏体在冷却过程中形成的碳化物 Cr23C6 和金属间化合物 Ni3Ti 颗粒提供了额外的强化作用。铁素体基体成分(α-(Cr,Fe)+ TiB2 + TiC + Cr23C6 的混合物)具有最高的延展性。复合材料的最强成分是奥氏体基体和最丰富的 TiB2 颗粒区域。这些区域具有最高的硬度、弹性模量、弹性恢复 Re 和耐磨性比 HIT/E。复合材料的硬度为 58 HRC。为了使复合材料产生塑性变形,建议在加热温度为 1000 °C 的条件下进行热轧,并进行全方位压缩。为此,将复合材料试样压入一个 10 毫米的钢壳中,顶部和底部焊接 6 毫米的钢板。在这种条件下,真正的塑性应变ε = 0.6。EBSD 分析表明,变形是由于复合材料基体中奥氏体和铁素体晶粒的动态多角化和再结晶引起的。奥氏体晶粒主要发生动态再结晶,而铁素体晶粒则主要发生动态多边形化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Studying the plastic deformability of a Ni–Fe–Cr–Ti–B–C composite
The paper studies changes in the structural state of a Ni–Fe–Cr–Ti–B–C composite after hot plastic deformation. The matrix of the composite consists of a mechanical mixture of two solid solutions: austenite and ferrite. Titanium carbide and diboride particles resulting from self-propagating high-temperature synthesis (SHS) are the strengthening phases. Additional strengthening is provided by carbide Cr23C6 and intermetallic Ni3Ti particles formed in austenite during cooling. The constituent with a ferrite matrix, which is a mixture of α-(Cr,Fe) + TiB2 + TiC + Cr23C6, is shown to have the highest ductility. The strongest constituent of the composite is represented by regions with an austenitic matrix and the most abundant TiB2 particles. These regions are characterized by the highest hardness, elastic modulus, elastic recovery Re and wear resistance ratio HIT/E. The hardness of the composite is 58 HRC. For plastic deformation of the composite, it is proposed to perform hot rolling at a heating temperature of 1000 °C under all-round compression. To do this, a composite specimen is pressed into a 10 mm steel shell, with 6 mm steel plates welded on top and from below. True plastic strain ε = 0.6 is achieved under these conditions. EBSD analysis testifies that the deformation is implemented due to dynamic polygonization and recrystallization of the austenitic and ferritic grains of the composite matrix. Dynamic recrystallization prevails in the austenitic grains, whereas dynamic polygonization predominates in the ferritic ones.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The technology of arc welding of dissimilar steels Experience in the application of simulation of hot forging in production conditions at the KUMW JSC Finite element simulation of frictional surface hardening by a rotary tool during the hardening of the faces of fixation holes for washers Exact solutions for the description of nonuniform unidirectional flows of magnetic fluids in the Lin–Sidorov–Aristov class A model of describing creep strains and porosity evolution for a hollow cylinder affected by internal gas pressure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1